3. Real numbers (Continued)

Exercise 3.3. Show that the set \mathbb{N} is unbounded. That is, show that there is no natural number N such that $n \leq N$ for all $n \in \mathbb{N}$. Can you bound \mathbb{N} with a real number X instead of N ?

Exercise 3.4. Use the Exercise 3.3 to prove the Archimedean property of \mathbb{R} :
If $x, y \in \mathbb{R}, x>0$, then there is a positive integer n such that $y<n x$.

Exercise 3.5. Show that between any two rational numbers $r_{1}<r_{2}$ there is always another rational number. What can you conclude about the representation of rational numbers as points on a line?

Note. As $\sqrt{2}$ shows, after representing the rationals on a line some "gaps" (actually a whole lot of them!) are present. The irrational numbers, or the real numbers that are not rational, are the mathematical "fillings" for these gaps.

Exercise 3.6. Define $x^{-1}=1 / x$, for $x>0, x$ real and not rational. (This is a bit long. Articulate well the main ideas and finish all the details when you get home.)

4. Limits

Exercise 4.1. Show using the definition that the sequence $\left(a_{n}\right)_{n=1}^{\infty}=\left((-1)^{n}\right)_{n=1}^{\infty}$ is not convergent.

Exercise 4.2. Show that if a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ converges to L, then any of its subsequences $\left(a_{n_{k}}\right)_{n=1}^{\infty}$ converges to the same limit.

Exercise 4.3. If a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of real numbers converges, then the set $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is bounded.

