Group Work Tip \#2. Encourage everybody in the group to participate in the discussion and listen to what the others are saying.

Exercise 13.8. Prove:

Another Mean Value Theorem. If f and g are continuous functions on $[a, b]$ which are differentiable on (a, b), then there is a point $c \in(a, b)$ such that

$$
\left.\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)} \quad \text { (assume } g(a) \neq g(b)\right) \text {. }
$$

(Hint. Consider $h(x)=(f(b)-f(a)) g(x)-(g(b)-g(a)) f(x)$.

14. Riemann integral

Exercise 14.1. Consider the function $f:[0,1] \rightarrow[0,1], f(x)=x$. Consider also the equidistant partition of $[0,1]$

$$
P=\left\{x_{0}=0, x_{1}=\frac{1}{n}, x_{2}=\frac{2}{n}, \ldots, x_{n-1}=\frac{n-1}{n}, x_{n}=1\right\} .
$$

Compute the lower and upper sums $L(f, P)$ and $U(f, p)$, respectively. How do these values compare with $1 / 2$?

Exercise 14.2. Show that we always have:

$$
L(f, P) \leq I(f, P, X) \leq U(f, P)
$$

Exercise 14.3. A partition R is a refinement of a partition P if $P \subset R$. Show that in this case:

$$
L(f, P) \leq L(f, R) \leq U(f, R) \leq U(f, P)
$$

