Exercise 12.13. Find the discontinuities of $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)=\left\{\begin{array}{lll}
0 & , & \text { if } x \notin \mathbb{Q} \\
\frac{1}{q} & , & \text { if } x=\frac{p}{q} \in \mathbb{Q}, \text { in the lowest terms }
\end{array}\right.
$$

(Hint. Consider a sequence $\left(r_{n}\right)_{n}$ of rational numbers, where $r_{n}=p_{n} / q_{n}$ in the lowest terms, with $q_{n} \in \mathbb{N}$, which converges to an irrational number x. What can you say about the sequence $\left(q_{n}\right)_{n}$?)

Exercise 12.14. If f is an increasing function on the interval (a, b), then the one-sided limits of f exist at each point $c \in(a, b)$, and

$$
\lim _{x \rightarrow c^{-}} f(x)=L \leq f(c) \leq \lim _{x \rightarrow c^{+}} f(x)=M .
$$

Exercise 12.15. Show that a monotone function $f:[a, b] \rightarrow \mathbb{R}$ has at most countable many discontinuities.

Exercise 12.16. If $f:[a, b] \rightarrow \mathbb{R}$ is monotone and the range of f intersects every non-empty open interval in $[f(a), f(b)]$, then f is continuous.

