2. Logic

Exercise 2.1. Check one the following duality principles:

$$
\neg(p \vee q) \Leftrightarrow(\neg p) \wedge(\neg q) \quad \text { and } \quad \neg(p \wedge q) \Leftrightarrow(\neg p) \vee(\neg q) .
$$

Exercise 2.2. A tautology is a statement that is always true. Show that the following are tautologies:
(a) $p \vee p \leftrightarrow p$ and $p \wedge p \leftrightarrow p$,
(b) $\neg(\neg p) \leftrightarrow p$,
(c) $p \vee \neg p$.

Exercise 2.3. Show one of the following equivalences:

$$
\begin{aligned}
& \neg[(\forall x) p(x)] \leftrightarrow(\exists x) \neg p(x), \\
& \neg[(\exists x) p(x)] \leftrightarrow(\forall x) \neg p(x) .
\end{aligned}
$$

Exercise 2.4. Consider the proposition

$$
p(\varepsilon, \delta)=" \delta<\varepsilon ", \text { where } \varepsilon, \delta \in \mathbb{R}
$$

Show that

$$
\neg[(\forall \varepsilon)(\exists \delta) p(\varepsilon, \delta)] \leftrightarrow(\exists \varepsilon)(\forall \delta) \neg p(\varepsilon, \delta)
$$

3. Real numbers

The reference here is Section 2.2 in our text-book.

Exercise 3.1. The purpose of this exercise is to make you aware of the following characterization:

The rational numbers are those real numbers whose decimal expansion is eventually periodic (that is, after a certain rank N, the digits a_{n} with $n \geq N$ begin to repeat in a certain finite pattern).
(a) What is the infinite decimal expansion of $1 / 7$? Of $1 / 11$?
(b) We denote an infinitely repeating succession of digits by enclosing the repeating part in parentheses and writing it only once. What rational number has the infinite decimal expansion:

$$
0.3(7)=0.3777777777 \ldots ?
$$

(c) Can you prove the above characterization of rational numbers? Do you see any possible problems or start to feel a bit uneasy with the definition of real numbers via decimal expansion?

Exercise 3.2. This exercise treats a very important concept. Let S be a set. A (total) order on S is a relation between the pairs of elements of S, denoted $<$, with the following two properties
(i) if $x, y \in S$ then one and only one of the statements

$$
x<y, x=y, \text { or } y<x \text { is true. }
$$

(ii) (transitivity) If $x, y, z \in S$, with $x<y$ and $y<z$, then $x<z$.

Construct an order on \mathbb{R}. (It is an old friend!) Provide full details, given two distinct real numbers x and y, for the meaning of $x<y$.

Note. By definition, an real number x such that $0<x$ is called positive. After we discuss the operations with real numbers, we shall see that \mathbb{R} is an ordered field, and that this order is one of the fundamental characteristics of \mathbb{R}.

