Exercise 12.7. Consider metric spaces X and Y, and a continuous function $f : X \to Y$. Show that for every compact subset C of X, its image under f, f(C), is compact in Y.

Exercise 12.8. Consider metric spaces X and Y, and a continuous function $f : X \to Y$. If C is compact in Y, must $f^{-1}(C)$ be compact?

Exercise 12.9. Consider yet another definition of compactness:

Definition. Let X be a topological space and Y a subset of X. A collection of open subsets $\{U_{\alpha} \mid \alpha \in A\}$ in X is called an **open cover of** Y if $Y \subset \bigcup_{\alpha \in A} U_{\alpha}$. A **subcover** of $\{U_{\alpha} \mid \alpha \in A\}$ is just a subcollection $\{U_{\alpha} \mid \alpha \in B\}$, with $B \subset A$, that is still a cover.

Definition. A subset C of X is called **compact** if

(K3) every open cover of C has a finite subcover.

Prove the property of Exercise 12.7 using this new description of compactness.