Exercise 9.5. Can you give examples of convergent series for which any rearrangement has the same sum?

Exercise 9.6. Prove the following:
Theorem. For an absolutely convergent series, every rearrangement converges to the same sum.
(Hint. Recall the Cauchy's criterion for series.)

Exercise 9.7. Consider the conditionally convergent series $\sum_{n=1}^{\infty} a_{n}$. Denote by $b_{1}, b_{2}, \ldots, b_{n}, \ldots$ the positive terms of the series and by $c_{1}, c_{2}, \ldots, c_{n}, \ldots$ the negative terms. Show that $\sum_{n=1}^{\infty} b_{n}$ and $\sum_{n=1}^{\infty}\left|c_{n}\right|$ both diverge. In particular this implies that there are infinitely many positive and negative terms in a conditionally convergent series.

Exercise 9.8. (Rearrangement Theorem) Prove that if $\sum_{n=1}^{\infty} a_{n}$ is a conditionally convergent series, then for every real number L, there is a rearrangement that converges to L.

Exercise 9.9. Let $\sum_{n=1}^{\infty} a_{n}$ be a series of real numbers. Assume that there exists M such that:

$$
\left|\sum_{n \in F} a_{n}\right| \leq M, \text { for every finite } F \subset \mathbb{N}^{*}
$$

Show first that $\sum_{n \in F}\left|a_{n}\right| \leq 2 M$, for every finite $F \subset \mathbb{N}^{*}$. Conclude that the series is absolutely convergent.

Exercise 9.10. If a series has every rearrangement convergent, is it true that the series is absolutely convergent?

