1. FUNCTIONS

Exercise 1.1. Consider two non empty sets A and B.

- (a) Show that one can define a **function** f from A to B as a subset of $A \times B$, denoted G(f), such that for each $a \in A$ there is *exactly one* $b \in B$ such that $(a, b) \in G(f) \subset A \times B$.
- (b) Interpret the definition by using a picture. What would be an appropriate name for G(f)?

Exercise 1.2. Consider a bijective function $f : A \to B$. Using Exercise 1.1 construct the inverse f^{-1} of f, and interpret this construction in terms of cartesian products of sets.

Exercise 1.3. By definition, the **power set** P(X) of a set X is the set consisting of all subsets of X, including \emptyset .

- (a) Find P(X) for $X = \{1\}, X = \{1, 2\}, X = \{1, 2, 3\}$, and $X = \{1, 2, 3, \dots, n\}$.
- (b) How many different subsets of $X = \{1, 2, 3, ..., n\}$ are there?
- (c) Find a bijection between P(X) and the set of all functions $f: X \to \{0, 1\}$. Can you recover the answer from part (b)?