Take Home Exam

Hints: [, b f(x)dx can be approximated with maple for any numbers a
and b ( or even w1th b—1nﬁn1ty) via evalf(int(f(z),x=a..b)); . Also it may
N1

1
be useful to recall that Zl ot = #

1. (Possible helpfull clarification: This problem will requires no sim-
ulation, however you can use maple to help you evaluate any difficult
looking integrals or sums). Imagine that you have saved some baby
sitting money to go on a fishing trip with your uncle Roy. The only
requirement is that your fishing line be at least 50 meters long. You
can’t go to the fishing supply store because you are busing baby sit-
ting your niece Emily. Fortunately in your basement your roommate
stores her fishing line making machine. You know the machine starts
making a piece of fishing line with an attaching device on the initial
end at a rate of 1 meter per minute (see the figure). The machine has
a failure rate that is exponentially distributed with A = 0.013. Your
roommate is out of town and you don’t know how to reset the machine
once it fails, so you must hope that the machine produces the needed
50 meters of fishing line before failing.

(a) What is the probability that the machine makes enough line for
you to go on the trip?

(b) Suppose the machine has produced its line, which is a big pile on
the floor. Oh no, Emily found a pair of scissors and cut the line!
Assuming that Emily’s cut was made uniform randomly, what is
the probability that the half of the line with the attaching device
on it is still long enoughto allow you to go on the trip? (Possible
helpful clarification: This problem assumes that you do not
know the length of the line on floor before Emily makes her cut.
Imagine that you let the machine run then came back much later
and noticed that it had indeed stopped, leaving you with a big
pile of line on the ground. Potentially this line is longer than 50
meters, potentially it is smaller, and Emily cuts this line before
you have a chance to measure it.)

2. (This problem is an elaboration of Problems 9 and 10 p. 72.) Recall
we learned to simulate how long we expect to “wait for a bus” given
the pdf of the initial waiting (as in exponential and the uniform on
[5,15] distributions in 9 and 10). In this problem you may compute the



expected value of a random variable X determined by a pdf f(t) via
E(X) = [%_tf(t)dt (Possible helpful clarification: notice that a
distribution function is defined everywhere, but may be zero over large
regions like (-infinty,0) in this problem.).

(a) Construct a pdf for the initial wait with expected value 10 min-
utes that has the property that the initial waiting time can never
be within a minute of its expect waiting time of ten minutes.
(Possible helpful clarification: Indeed, it would be recom-
mended that you use a continuous distribution since the formu-
lae are given in terms of integral and that you are modeling the
arrival time of a bus).

(b) Using your density function, simulate the expect waiting time if
you arrived at time 100.

(¢) In class we deduced that the expected waiting time when we ar-
rive at time 100 should be about W = 1/20 [*°_#2f(t)dt. Artic-
ulate how likely this integral’s value is to be the actual expected
waiting time given your empirically determined estimate of the
expected waiting time from part 2b. (Possible helpful clari-
fication: There is a typo here namely we need 1/20 not 1/10
as stated. Notice that this problem is asking you to test the
hypothesis that the integral produces the correct value.)

3. First reread the Watson and Holmes problem, problem 22 p. 91. Now
Holmes says, “Watson I think you misunderstand watch counterfeiting.
In such a circumstance, the watches are released into the community
as they are produced. Let us call the time it takes to produce a watch
AT. Suppose a counterfeiter releases a watch into the community at
time S. Let A be the event that the watch is recovered in the time
interval [T, T+ AT] with T > S and let B be the event that the watch
was not recovered in the time interval [S,T], then we may assume
P(A|B) = p for some p.” (Possible helpful clarification: I have
changed the strict inequalities to inequalities, this makes no actual
difference since we are veiwing any partiular time (measured with an
infinite precision clock) as having zero probability of occurring, but a
student found the original choices confusing. I hope these choices are
less confusing. )

(a) Under Holmes’ assumption, suppose a watch is released at time
S. For each n > 0 let C,, be the event that the watch is recovered



in the time interval [S +nAT, S+ (n+ 1)AT]. Compute P(Cy,).

Suppose the counterfeiter releases his first watch at time 0, and
releases a single watch at each subsequent time jAT. Call the
watch released at time jAT the jth watch. Let the random vari-
able X; be 1 if the jth watch has been recovered and 0 otherwise.
Suppose the time now is NAT, what is the expected value of X ;7
(Hint: X is an indicator function.)

Notice R = Zfi_ol X, is the number of the N released watches
recovered at time NAT. Use the first fundamental mystery of
probability to compute E(R) in terms of ¢ and N, and then
argue based on this computation that g =1 —p~ 1 — ﬁ(R)'
(Possible helpful clarification: i in the X; was previously a j,

which was a typo).

Now we’d like to find the most likely IV given our data, so we in-
troduce the random variable Y; which is j if the jth watch has been
recovered and 0 otherwise, and we look at the random variable
M = max(Yo,...,Yn—1). Given the description of the situation
in problem 22 p. 91 what are good estimates F(R) and E(M).

Argue that in order to find the most likely N that it is reasonable
to find the N which most closely produces your proposed E(M).

By simulating find a good value of N, and answer whose estimate
is better now, Watson’s or Holmes’?



