Math 54 Final Exam

You may use and may only use Armstrong's text, your class notes, homework solutions which **you** wrote up, homework solutions placed on our web site, and your instructor for help. Prove all claims. You may use without proof any results proved in chapters 2-5 of the book and any results from assigned homework. Open ended questions should be answered with a proof or a counter example, where any counter example produced should be **proved** to be a counter example.

Part 1: Basic Concepts

Call a space locally compact if every point is contained in an open set whose closure is compact. Given a locally compact Hausdorff space X which is not compact we may form a new space \check{X} which as a set is $X \cup \{\infty\}$ where $\{\infty\}$ is a set containing a single point denoted by ∞ . Call a set open in \check{X} if it is either an open set in X, all of $X \cup \{\infty\}$, or any set in the form $(X - K) \cup \{\infty\}$ with K a compact subset of X. \check{X} is called the one point compactification of X.

For this problem let C be the infinite cylinder in \mathbf{E}^3 described by

$$\{(x, y, z) \in \mathbf{E}^3 \mid x^2 + y^2 = 1\},\$$

and let O_4 be the disjoint union of four copies of the open interval (0, 1).

- 1. (10 points) Prove the following.
 - (a) The open sets described above indeed form a topology on $X \cup \{\infty\}$.
 - (b) \check{X} is a compact Hausdorff space.
 - (c) X is dense in \check{X} .
 - (d) The inclusion map of X into \check{X} is an embedding.
 - (e) Sketch what \check{C} and \check{O}_4 will look like (by embedding them in \mathbf{E}^3).
- 2. (10 points) Let X and Y be locally compact Hausdorff space and prove the following.
 - (a) A continuous map f from X to Y extends to a continuous map from \check{X} to \check{Y} if and only if $f^{-1}(K)$ is compact for every compact set K in Y.
 - (b) If X and Y are homeomorphic then \check{X} and \check{Y} are homeomorphic.
 - (c) Find two spaces which are not homeomorphic but have homeomorphic one point compactifications.

Part 2: Identification Spaces.

Let C_4 be the disjoint union of four copies of [0,1], and P_4 be the partition of C_4 into sets which includes the single points in the form $p \in (0,1)$ for one of the copies of [0,1] and the set containing **all** the end points (i.e. " $\{0,1,0,1,0,1,0,1\}$ ").

Let M be the "paper towel role" in \mathbf{E}^3 described by

$$\{(x, y, z) \in \mathbf{E}^3 \mid x^2 + y^2 = 1, -1 \le z \le 1\}.$$

Let P be the partition of this set which includes the singles points $(x, y, z) \in M$ when $|z| \neq 1$ and the set

$$\{(x, y, z) \in M \mid |z| = 1\}.$$

Let N be th regular octagon in \mathbf{E}^2 as pictured below, and let Q be the partition described by identifying points in the boundary as in the figure.

- 1. (10 points) Prove the following.
 - (a) The identification space I_{P_4} is homeomorphic to $\check{O_4}$.
 - (b) The identification space I_P is homeomorphic to \check{C} .
- 2. (5 points) Prove that I_Q is a compact surface.
- 3. (5 points) Prove that a retract is an identification map.

Part 3: The fundamental group and covering spaces.

- 1. (10 points) Find $\pi_1(S^2 \{p,q\})$ where p and q are two distinct points in the sphere S^2 .
- 2. (10 points) Prove a simply connected space can have only one path connected cover and describe this cover.
- 3. (10 points) Prove that $\pi_1(\check{O}_4)$ is not a commutative group.
- 4. (10 points) Using only what we know, prove I_Q is not homeomorphic to the sphere S^2 .