Reference: Today we will apply some of the fundamental group ideas we have been developing. Here I collect the results we will be using and proving.

Some facts about the fundamental group $\pi_1(X, p)$:

1. A Deck Like Action: Given a topological space X and a group G given the discrete topology. A continuous action of G on X will be called deck like if for every $p \in X$ there is an open set $U \subset X$ such that $U \cap gU$ is empty for every $g \in G - id$.

Example: The action of \mathbb{Z}_2 (which is isomorphic to $\{1, -1\}$ under multiplication) on $S^n = \{x \in \mathbb{E}^{n+1} \mid ||x|| = 1\}$ given by $-1 \cdot x = -x$ is a deck like action.

Example: The action of the integers on **R** given by $m \cdot x = x + m$ is a deck like action.

2. (The Deck Theorem) If X is simply connected and G acts on X on a deck like way, then $\pi_1(X/G)$ is isomorphic to G.

Example: We know that S^n is simply connected for n > 1, hence $\pi_1(P^n)$ is \mathbb{Z}_2 .

Example: We know that **R** is simply connected for n > 1, hence $\pi_1(S^1)$ is isomorphic to **Z**.

- 3. The Isomorphism: Let the identification map be called $\pi : X \to X/G$. The isomorphism in the deck theorem is given by fixing $p \in X/G$ and $q \in \pi^{-1}(p)$ then defining $\Psi(g) = \langle \pi(\gamma_g) \rangle$ with γ_g any path connecting q and $g \cdot q$.
- 4. Mapping Properties: A continuous map $f: X \to Y$ induces a homomorphism between fundamental groups $f_{\star}: \pi_1(X, p) \to \pi_1(Y, f(p))$ given by $f_{\star}(<\alpha>) = < f(\alpha) >$. Further this correspondence respects compositions, i.e. given a continuous map $g: Y \to Z$ we have that $g_{\star} \circ f_{\star} = (g \circ f)_{\star}$.

Example: Let $f : P^n \to S^1$ be a continuous map. Then for any $\langle \alpha \rangle \in \pi_1(P^n, p)$ we have that $\langle f(\alpha) \rangle = id$ in $\pi_1(S^1, f(p))$.

Covering Spaces:

1. Covering space definition and notation: We say \tilde{X} covers X if there is a continuous map $\pi : \tilde{X} \to X$ such that for every $p \in X$ there is an open set $V \subset X$ with $p \in V$ such that $\pi^{-1}(V) = \{U_{\alpha}\}$ with the U_{α} pairwise disjoint and satisfying the property that for each α we have that π restrict to U_{α} is a homeomorphism. In what follows, qwill denote an element in $\pi^{-1}(p)$.

Example: For any sphere S^n the mapping π sending x to the partition element $\{x, -x\}$ makes S^n into a cover of the projective plane P^n . Notice when n = 1 that we have a cover the circle with via another circle.

- 2. (The path-lifting lemma): If γ is a path beginning at p, then there is a unique path $\tilde{\gamma}$ in \tilde{X} which begins at q and satisfies $\pi \circ \tilde{\gamma} = \gamma$.
- 3. (The homotopy-lifting lemma): If $F: I \times I \to X$ is a continuous map such that F(0,t) = F(1,t) = p for all $0 \le t \le 1$, then there is a unique continuous map $\tilde{F}: I \times I \to \tilde{X}$ which satisfies $\pi \circ \tilde{F} = F$ and $\tilde{F}(0,t) = q$, for all $0 \le t \le 1$.

Typical Use: Look at the previous example. Take any path $\tilde{\gamma}$ from q to -q for for some $q \in S^n$ and define $\gamma = \pi \circ \tilde{\gamma}$. Notice that $\pi(q) = \pi(-q) = p \in P^n$ hence γ is a path and from the path lifting lemma $\tilde{\gamma}$ is indeed the unique lifting of the path γ to S^n starting at q. Use the homotopy lifting lemma to show that $\langle \gamma \rangle \neq id$ in $\pi_1(P^n, p)$.

Nifty applications.

- 1. (the Borsuk-Ulam Theorem) Call a continuous mapping $f: S^n \to S^m$ antipode preserving if $\{f(x), f(-x)\} = \{f(x), -f(x)\}$ for every $x \in S^n$. Prove there is no antipode preserving mapping from S^2 to S^1 .
- 2. (The Meteorological Theorem) Prove that for any continuous map $f: S^2 \to R^2$ that there is an $x \in S^2$ such that f(x) = f(-x).
- 3. (The Lusternik-Schirlmann Theorem) Prove that if S^2 by 2+1 closed set, then one of these sets contains an antipodal pair $\{x, -x\}$.

Retractions

1. (Retractions) If A is subspace of X then a continuous map $g: X \to A$ is called a retraction if g(a) = a for all $a \in A$, and A is called a retract of X.

Example: S^1 is a retract of $E^2 - \{(0,0)\}.$

2. (Retraction Lemma) Suppose A is retract of X, then the inclusion mapping of A into X induces a one to one homomorphism from $\pi_1(A, a)$ to $\pi_1(X, a)$.

Example: S^1 is not a retract of the closed ball in \mathbf{E}^2 , which we will denote B.

- 3. (Brouwer Fixed Point Theorem) Any continuous map of *B* to itself has a fixed point.
- 4. (The "There's Your Scalp!" Theorem) For every non-vanishing vector field V on B there is a point where V points directly inward and a point where V points directly outward.

A Rigorous Proof of a Great Theorem:

- 1. (A Null Homotopy Lemma) If a continuous map f of S^1 into X extends to a map of B, into X then f_* is trivial.
- 2. (The Multiplication Mapping) z^n restricted to S^1 is the multiplication by n map on $\pi_1(S^1)$.
- 3. (An Extension Lemma) A continuous map f of S^1 into X extends to a map of B into S^1 if and only if f is homotopic to a point.
- 4. (The Fundamental Theorem of Algebra:) Every polynomial equation $x^n + c_{n-1}x^{n-1} + \cdots + c_0$ of degree n > 0 has at least one root.

Separation Theorems

- 1. (Tietze Extension Theorem) Any real valued continuous function defined on a closed subset of a metric space can be extended to the whole space.
- 2. (The path-lifting lemma): If γ is a path beginning at p, then there is a unique path $\tilde{\gamma}$ in \tilde{X} which begins at q and satisfies $\pi \circ \tilde{\gamma} = \gamma$.
- 3. (A non-separation theorem) Suppose $f: I \to \mathbf{E}^2$ is an embedding. Then $\mathbf{E}^2 - f(I)$ has one component.
- 4. (The Jordon Curve Theorem) Suppose $f: S^1 \to \mathbf{E}^2$ is an embedding. Then $\mathbf{E}^2 f(S^1)$ has exactly two components, the bounded and the unbounded.
- 5. (Schoenflies Theorem) Suppose $f : S^1 \subset \mathbf{E}^2 \to \mathbf{E}^2$ is an embedding, then f extends to a homeomorphism of \mathbf{E}^2 to \mathbf{E}^2 . (In particular the bounded component is homeomorphic to a ball and the unbounded component homeomorphic to a ball minus a point).
- 6. (A Fact) The Jordon curve theorem is true in all dimensions but the Schoenflies theorem is not.