Some homework:

1. Carefully write up our proof of the Borsuk Ulam theorem.
2. Here we explore a nifty application of the Borsuk Ulam theorem.
(a) Notice that every $x \in S^{2}=\left\{x \in E^{3} \mid\|x\|=1\right\}$ can be associated to the plane containing the origin perpendicular to line through x and the origin, and that this plane separates space into two regions, the side containing x, call it S_{x}, and the the side that doesn't. Identify E^{2} with the $x y$-plane translated up to the point $(0,0,1)$ and let C be a compact subset of the plane bounded by a piece-wise linear curve. Argue that the $f_{C}(x)=\operatorname{Area}\left(S_{x} \cap C\right)$ is continuous. (It is in fact quite a bit of work and requires the use of the axiom of choice to find a bounded set that doesn't satisfy this property!)
(b) Prove with out the use of topology that for any region C as described in the previous problem that there is a line such that the line splits C into two disjoint equal area regions. Rephrase the problem in terms of the f_{C} mapping.
(c) Let C_{1} and C_{2} be two regions as described in the first problem. Use the Borsuk Ulam theorem to prove that there is a single line which simultaneously cut C_{1} and C_{2} into two disjoint equal area regions. (For fun: construct a somewhat complicated example of two such regions, and try and do it!).
3. We say X has the fixed point property if every continuous function of X to itself has a fixed point. Suppose X retracts onto A. Answer (with proof) the following questions.
(a) If X has the fixed point property must A ?
(b) If A has the fixed point property must X ?
4. Think of E^{3} as a vector space and let L be a linear isomorphism represented by a matrix with non-negative coefficients. Use the Brouwer fixed point theorem to show L has an eigenvector with all non-negative coordinates.
5. Definition: We say a subspace A of X is a deformation retract of X if the identity map on X is homotopic to a retract of X onto A relative A. Prove if A is a deformation retract of X then $\pi_{1}(A)$ is isomorphic to $\pi_{1}(X)$.
6. Let $S T$ be the solid torus described as described on the exam.
(a) Produce a deformation retract of the solid torus onto a circle.
(b) Prove there does not exist a retract of the solid torus onto its boundary.
