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Math 53: Chaos! 

Controlling Chaos!
In this project, we researched various techniques of chaos control.  We begin with a brief discussion of chaotic systems and some of the properties which allow for their control.  We will then go over some of our simulations to prove that the theoretical ideas underpinning a technique are indeed practical.  Finally, we will go over some recent research and implications of the technique.

I – Introduction to chaotic systems and chaos control

Since the discovery of chaos, countless phenomena have proven themselves to be chaotic in a wide range of fields, such as fluid turbulence, mechanical vibrations, oscillating chemical reactions, and the rise and fall of epidemics (Olsen and Shaffer, 1999).  One of the key questions in the research of these systems is how they could be manipulated, or controlled.

The origin of the idea of controlling chaos is that unlike random sequences, chaotic systems can be controlled by using the underlying non-linear deterministic structure.  We will see two strategies which both exploit this underlying structure in order to control the system.
Once chaotic systems can be effectively harnessed, it might even be advantageous to design chaos into a system.  The essence of chaos’ utility is that one may want a system to be used for different purposes at different times.  A chaotic system provides us with such plasticity, for we make choose any of the infinite number of unstable periodic orbits and stabilize it quickly and with only small perturbations. Due to its sensitivity to initial conditions, for a chaotic system, these perturbations can be very small, which is not necessarily true for other systems, where large perturbations are usually necessary to obtain a large impact.
II – The mathematics of chaos control

This field of study was pioneered by Edward Ott, Celso Grebogi, and James Yorke.  In 1990, they analyzed several orbits along a chaotic attractor, and showed that small carefully chosen system parameter perturbations could stabilize the optimal chaotic orbit.

There are two fundamental methods to achieve chaos control.  The first method was pioneered by Ott, Grebogi, Yorke, and it consists in modifying the parameters of the system in order to move the stable manifold to the current system state.  The second method was implemented by Garfinkel et. al. and called Proportional perturbation feedback.  The idea is to force the system onto the stable manifold by a small perturbation.  The Ott, Grobogi and Yorke method works where it is possible to exert some control over some of the parameters, such as the magnetic field surrounding a magnetoelastic ribbon, the source of heat in a liquid convection circuit and or the variable resistance or current in a chaotic circuit. Because the dynamical behavior of such a system changes so dramatically with small changes in parameters, nearly all fixed points are possible targets for stabilization


One method of doing this is to assume linearity on a small scale and then adjust the parameters such that the initial point is within a localized stable manifold. This method works to keep the orbit within a range and is easier to compute as it only requires linear approximations, but it does not offer the precise control that other, more refined methods offer.

Another method relies on the complex orbit structure of a chaotic map. Because of the complex structure of the orbits, any orbit will eventually come very close any point or orbit that one would desire and then only a small perturbation is required to move it to the desire point region, which is used to maximize efficiency, where efficiency is defined individually for the problem. (Ott, 2002)

Because of the nature of chaos, there are infinitely many unstable periodic orbits in a chaotic map. Therefore we only need to the unstable periodic orbit that maximizes the efficiency of our system and then we can iterate the map until gets close and adjust the parameters of the map so that the orbit reaches the fixed point. In a case without noise, once the orbit reaches an unstable periodic orbit, then there won’t be a need to perturb the system further. In most cases, however there is noise and the most we can do is to get the orbit very close to the unstable periodic orbit and then constantly apply the control. 
 
We used MATLAB to test some of these ideas experimentally.  We used the common and simple time delay embedding of the Hénon Map. There are two main versions of the code. We take one fixed point for specific value of a called a0 and then find the eigenvectors of the Jacobian for the Hénon map. We assume that all other eigenvectors for the fixed points in a region are parallel and then use some simple linear algebra to determine the a value for the fixed point on the stable manifold that the point we are trying to control is on. If that point is within a certain region of the original fixed point, then we switch the a value such that the moving point is on the stable manifold. In this case the control region has to be larger because sometimes the point is controlled, but is iterated away from the original fixed point. This led to cases where the x value was kept in bounds but still behaved chaotically around the fixed point. This code also had more trouble dealing with random noise and in order for the control to work, the noise added in each iteration had to have a standard deviation more than an order of magnitude less than the control region in order for the orbit to remain bounded and after a few hundred iterations, the orbit would jump to another level.

The next version of the code could use a smaller control region before it started behaving chaotically because we determined a new fixed point off of which to calculate the stable manifolds and to determine the control region every iteration of the map. This lead to the map being stable, but also settling it farther away from the original fixed point. When noise is added, a similar phenomenon occurs. Although the orbit is consistent, whether or not it is near the original orbit is random. The orbit can also stay bounded with more noise: the standard deviation of the noise can be up to forty percent of the control radius.  The results and the code for these experiments are presented in the Appendix.
III – Recent research and interventions

As is usually the case with science, after the groundwork for the technique of chaos control has been laid down, research and interventions began appearing in most interesting and unexpected areas.

One intervention is to prevent the capsizing of a ship in a rough sea.  It turns out that non-linear effects play an important role, because the roll and yaw motion are coupled and can lead to capsizing if not controlled (Kreuzer and Wendt, 2000).  Another famous intervention was in the case of the NASA ISEE-3/ICE explorer which in 1985 was the first spacecraft to encounter a comet.

The knowledge that the targeting a point in space with only small perturbations is possible with chaos and especially sensitive dependence on initial conditions was applied because NASA had limited fuel and could only provide small perturbations to the craft  and because the spacecraft laid in the chaotic three body the Earth, Moon, Satellite system.

NASA wanted to study the comet without having to go through the expense of launching another satellite into space. They also happened to have a spaceship, the International Sun Earth Explorer 3 which had completed its mission and was lying in the unstable Libration point, where the gravitational fields of the Sun and Earth canceled each other. The spacecraft still had some fuel and could thus only perform small perturbations upon its orbit. NASA used sensitive dependence on initial conditions and the ship passed close to the earth and moon several times before “it was slung outwards leaving the Earth-Moon system. The spacecraft, now renamed the International Cometary Explorer-3, traveled half-way across the solar system to make the first close observations of a comet. That this mission was possible using only the relatively small amount of fuel in the parked ISEE-3 spacecraft is due to the chaotic nature of the gravitational three body problem.”(Ott, 2002)

Of course this was not an ideal system and there was no way for the spacecraft to maneuver with the precision required to follow its orbit exactly, thus there had to be adjustments. In the end ICE maneuvered 15 times, with only 4 maneuvers being planned. The craft will return to earth in 2012 (Shinbrot et al., 1993).  
When the deterministic equations of a system are not known, it is still possible to attempt some form of chaos control.  The general method followed in the following examples is to design an algorithm to take the data and plot a two dimensional time delayed embedding of In vs. In-1.  From there, by theorem, if two pairs of points lay near each other, there must be a fixed periodic point nearby.  Here is the justification:

“For sufficiently large N, the time series will visit the neighborhood of an arbitrary period n cycle at some time i.  At time i+1 the series will be at another cycle-n point, and so on. After n iterations, the time series will again visit near the initial cycle-n point, under the assumptions the n time steps previously the sequence was sufficiently close to it.” (Auerbach et al., 1987)  Thus, periodic orbits can be located by scanning the time series for adjacent points.  The actual position of the unstable fixed point around which all these periodic orbits move is estimated by finding the center of mass of all points in the time series which corresponded to it.  To evaluate the stability of the fixed point and find its eigenvectors, a mean squared procedure is used to estimate the Jacobian matrix.  The eigenvalues of the matrix will indicate the stability of the fixed point.  In the case of a saddle point, the eigenvector corresponding to an absolute value of less than one will point along the stable manifold, and the other eigenvector will point along the unstable manifold.  
The human brain exhibits a pattern of interictal spikes, which can be modeled by a brain slice preparation exposed to convulsant drugs that reduce inhibition.  Schiff et al. removed and sectioned the hippocampus of rats (where sensory inputs and distributed to the forebrain) and perfused it with artificial cerebrospinal fluid.  After a learning phase consisting of the identification of saddle points and a linear regression to obtain the stable and unstable manifolds, an algorithm delivered pulses to either reduce chaos and stabilize the unstable fixed point using the stable manifold, or destabilize the fixed point and increase chaos (Schiff et al., 1994).  While the authors succeeded in stabilizing an unstable saddle point, they suggest that perhaps doing the opposite (the anti-control: breaking up fixed point periodic behavior) could perhaps be more useful in vivo.    Such research could one day lead to intervention strategies for preventing epileptic seizures.


Another important system under investigation is the human heart.  It has been shown to exhibit low dimensional chaos (Chialvo et al., 1990).  Indeed, it seems that a chaotic heart is a health heart, as a decrease in chaos has been associated in congestive heart failure (Poon and Merrill, 1997).  On the other hand, it has been shown that an increase in the embedding dimension of the heart rate variability is an indicator of ventricular abnormalities (Andres et al., 2006).  Heart arrhythmias are one of the most dangerous states for a heart to enter, as an insufficient quantity of blood gets pumped, leading eventually to heart failure.  

Garfinkel et al. (1992) were able to stabilize cardiac arrhythmias induced by ouabain, a cardiac glycoside, by a form of chaos control.  Their method was to identify an unstable fixed point, and estimate the directions along which the stable and unstable manifolds point.  Then, they could deliver a small perturbation from time to time to force the system state point away from the unstable manifold, and towards the stable manifold.  
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Figure 1.  Schematic representation of the state perturbation of Garfinkel et al., and the identification of the fixed point and its manifolds of a cardiac tissue preparation.
One can speculate that in the distant future, implantable cardioverter defibrillators will be able to shock the heart back into a normal rhythm using only a fraction of a joule, instead of the usual 10-100 joules currently needed, and thus do far less damage to the other tissues of the body.  
References

Nonlinear Dynamics of Ship Oscillations.  Edwin Kreuzer and Mareike Wendt.  COC 2000, St.Petersburg, Russia
Controlling Chaos in the brain.  Steven J. Schiff*, Kristin Jerger*, Duc H. Duong*, Taeun Chang*, Mark L. Spano† & William L. Ditto‡  Nature 370, 615 - 620 (25 August 1994); doi:10.1038/370615a0

Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics

LF Olsen and WM Schaffer (3 August 1990)
Science 249 (4968), 499.

Low dimensional chaos in cardiac tissue.  Dante R. Chialvo, Robert F. Gilmour Jr* & Jose Jalife.  Nature 343, 653 - 657 (15 February 1990)
Decrease of cardiac chaos in congestive heart failure.  Chi-Sang Poon1 and Christopher K. Merrill1  Nature 389, 492-495 (2 October 1997) | doi:10.1038/39043; Received 20 May 1997; Accepted 1 August 1997


Controlling cardiac chaos.  A Garfinkel, ML Spano, WL Ditto, and JN Weiss

Science, Vol 257, Issue 5074, 1230-1235, 1992


Exploring chaotic motion through periodic orbits.  Ditza Auerbach, Predrag Cvitanović, Jean-Pierre Eckmann, Gemunu Gunaratne, and Itamar Procaccia.  Phys. Rev. Lett. 58, 2387 - 2389 (1987)

Increase in the embedding dimension in the heart rate variability associated with left ventricular abnormalities.  Appl. Phys. Lett. 89, 144111 (2006). Andres DS (Andres, D. S.), Irurzun IM (Irurzun, I. M.), Mitelman J (Mitelman, J.), Mola EE (Mola, E. E.)

Chaos in Dynamical Systems. Edward Ott.  2nd ed. University Press, Cambridge. 2002 pp379-393.
Using small perturbations to control chaos.  Troy Shinbrot, Celso Grebogi, James A. Yorke & Edward Ott.  Nature 363, 411 - 417 (03 June 1993)

Distance.m, Roland Bunschoten, IAS, 1999

[image: image2.emf]0 200 400 600 800 1000 1200

-1.5

-1

-0.5

0

0.5

1

1.5

Henon Map with control radius of .3 around x0 and random noise std .01

[image: image3.emf]0 200 400 600 800 1000 1200

-1.5

-1

-0.5

0

0.5

1

Henon Map with Control Radius .1 around moving point with noise std .04 vs control with no noise
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Henon Map with Control Radius .1 around moving point with noise std .04 vs control with no noise
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Henon Map with Control Radius .1 around fixed point that changes every iteration


Code:

function d = distance(a,b)

% DISTANCE - computes Euclidean distance matrix

%

% E = distance(A,B)

%

%    A - (DxM) matrix 

%    B - (DxN) matrix

%

% Returns:

%    E - (MxN) Euclidean distances between vectors in A and B

%

%

% Description : 

%    This fully vectorized (VERY FAST!) m-file computes the 

%    Euclidean distance between two vectors by:

%

%                 ||A-B|| = sqrt ( ||A||^2 + ||B||^2 - 2*A.B )

%

% Example : 

%    A = rand(400,100); B = rand(400,200);

%    d = distance(A,B);

% Author   : Roland Bunschoten

%            University of Amsterdam

%            Intelligent Autonomous Systems (IAS) group

%            Kruislaan 403  1098 SJ Amsterdam

%            tel.(+31)20-5257524

%            bunschot@wins.uva.nl

% Last Rev : Oct 29 16:35:48 MET DST 1999

% Tested   : PC Matlab v5.2 and Solaris Matlab v5.3

% Thanx    : Nikos Vlassis

% Copyright notice: You are free to modify, extend and distribute 

%    this code granted that the author of the original code is 

%    mentioned as the original author of the code.

if (nargin ~= 2)

   error('Not enough input arguments');

end

if (size(a,1) ~= size(b,1))

   error('A and B should be of same dimensionality');

end

aa=sum(a.*a,1); bb=sum(b.*b,1); ab=a'*b; 

d = sqrt(abs(repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) - 2*ab));

N=1000;

x=zeros(2,N+1);

a0=1.3;

b=.4;

xx = -1/2+(1/2)*b-(1/2)*sqrt(1-2*b+4*a0);

yy = xx;

xfixed =[xx;yy]

A = [-2*xx .4; 1 0];

[V,D]=eigs(A);

v=V(:,2)

derxa=-1/sqrt(b^2-2*b+1+4*a0);
%derivative of the the fixed with respect to a(

vder=[derxa;derxa];

a=a0

x(:,1)=[-1.4;-1.46];

for n=1:N

if (distance(xfixed,x(:,n))<.1)

z=x(:,n)-xfixed;

M=[vder,v];

da=M\z;
%da is the change in a

a=a0+da(1);

f = @(x) [a-x(1,:).^2+b*x(2,:);  x(1,:)];

x(:,n+1)=f(x(:,n));

else

f = @(x) [a-x(1,:).^2+b*x(2,:);  x(1,:)];

x(:,n+1)=f(x(:,n));

end

%x(:,n+1)=x(:,n+1)+randn(2,1)*.01;

end

%x=x+randn(2,N+1)*.2;

%y=y+randn(n,2)*level*std(y);

z=x(1,:);

figure; plot(z);

title('Henon Map with control radius of .1 around x0 and no noise')

N=1000;

x=zeros(2,N+1);

a=1.3;

b=.4;

x(:,1)=[-1.4;-1.46];

for n=1:N

xx = -1/2+(1/2)*b-(1/2)*sqrt(1-2*b+4*a);

yy = xx;

xfixed =[xx;yy];

A = [-2*xx .4; 1 0];

[V,D]=eigs(A);

v=V(:,2);

derxa=-1/sqrt(b^2-2*b+1+4*a);
%derivative of the the fixed with respect to a(

vder=[derxa;derxa];

if (distance(xfixed,x(:,n))<.1)

z=x(:,n)-xfixed;

M=[vder,v];

da=M\z;
%da is the change in a

a=a+da(1);

f = @(x) [a-x(1,:).^2+b*x(2,:);  x(1,:)];

x(:,n+1)=f(x(:,n));

else

f = @(x) [a-x(1,:).^2+b*x(2,:);  x(1,:)];

x(:,n+1)=f(x(:,n));

end

x(:,n+1)=x(:,n+1)+randn(2,1)*.04;

end

%x=x+randn(2,N+1)*.2;

%y=y+randn(n,2)*level*std(y);

figure; plot(x(1,:)); title('Henon Map with Control Radius .1 around moving point with noise std .04 vs control with no noise'); hold on;

%contrast with no noise

x=zeros(2,N+1);

a=1.3;

b=.4;

x(:,1)=[-1.4;-1.46];

for n=1:N

xx = -1/2+(1/2)*b-(1/2)*sqrt(1-2*b+4*a);

yy = xx;

xfixed =[xx;yy];

A = [-2*xx .4; 1 0];

[V,D]=eigs(A);

v=V(:,2);

derxa=-1/sqrt(b^2-2*b+1+4*a);
%derivative of the the fixed with respect to a(

vder=[derxa;derxa];

if (distance(xfixed,x(:,n))<.1)

z=x(:,n)-xfixed;

M=[vder,v];

da=M\z;
%da is the change in a

a=a+da(1);

f = @(x) [a-x(1,:).^2+b*x(2,:);  x(1,:)];

x(:,n+1)=f(x(:,n));

else

f = @(x) [a-x(1,:).^2+b*x(2,:);  x(1,:)];

x(:,n+1)=f(x(:,n));

end

end

plot(x(1,:),'g','Linewidth',4);

N=1000;

x=zeros(2,N+1);

a0=1.3;
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