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Math 53
Creating Music from Chaos


The connection between music and math is often noted, so it is no wonder that there has been a good amount of previous research dedicated to connecting chaos and music. Research in this field has been recent, as the field of chaos is relatively new. In the subfield of music creation from chaotic equations, previous material has two focuses: creating variations on previously composed music and directly generating music from chaotic equations. The second category has subcategories of its own: computer music and conventional music. Creating “computer music” using chaotic equations produces interesting and in some cases aesthetically pleasing results (See Autonomous and Dynamical Systems by David Dunn). However, a focus on more conventional music in this project was chosen, as it is less common to associate chaotic systems and computers with this type of music. Some conventional composers, including Ligeti, have incorporated the ideas of chaos into classical music already(Steinitz 14-17), though Ligeti’s works do not directly use chaotic equations as generators. The goal of this project was to find applications of variations on music from chaotic mappings and to create aesthetically pleasing music from chaos.
The Dabby Method


Diana Dabby examined the utility of varying preexisting music with chaotic equations in 1996. Her reasoning for choosing chaotic mappings was as follows. “The sensitive dependence property of chaotic trajectories offers a natural mechanism for variability”(Dabby 95). Just as chaotic orbits that begin very close stay close for a while and then diverge, musical variations begin with similar traits to passages that they are based on and evolve with time into a new idea. Additionally, “[e]very pitch in a musical work is a consequence of the pitches that precede it and a foreshadowing of the pitches that follow”(Dabby 95). Used in parallel, these two traits seem to mathematically imitate a composer’s thought process.
Dabby began with pre-existing musical material and recorded its pitch sequence. She then simulated a trajectory of the Lorenz equation with parameters causing chaotic behavior of the flow(r=28,σ=10,b=8/3). This trajectory was produced by a step size h, and was labeled the ‘reference trajectory’. Each point in the orbit was assigned the corresponding pitch from the pitch sequence. Next, a second trajectory with an initial condition very close to the reference trajectory was simulated, using the same h. This second trajectory was then compared to the reference trajectory. Every point in the second trajectory was assigned to the pitch associated with the point in the reference trajectory that had the smallest x-value greater than the x-value of the second-trajectory point. The pitches were then played in the order that the second trajectory produced (Dabby 96).

Implementation


Dabby’s method was effective in varying the Bach piece she worked with. Another use for this method is related to jazz improvisation. Like a classical variation, much jazz improvisation draws from ideas taken directly from a theme, and reorders and reallocates small fragments of the theme into new motifs. Jazz differs from classical in that rhythm, not melody, is the dominant trait of the music. Therefore, it is necessary to record both a pitch and rhythm sequence of the jazz piece, and to perform Dabby’s process on both parameters. The easiest way to achieve this is to use x-values of the orbits to determine the new pitch sequence and the y-values of the orbits to determine the rhythmic values of these pitches. Increasing h produced better results, as jazz solos tend to deviate from the theme on which they are based much more quickly than classical variations.
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This modified process was easy to apply to jazz standards that stayed in the same key and that had melodies that used only notes that were in the intersection of the scales implied by chord changes. Track 1 of the accompanying disk is a solo 
produced by this process over the A section of Take Five by Dave Brubeck. Tracks 2-4 are three different versions of Blue Trane by John Coltrane, the solos in which are created using different reference orbits and initial conditions. The bass lines in these samples are used for reference and are unaltered. For a description of the sound generation process, see Appendix A. For full code for Track 4, see Appendix B. Applying the process to jazz standards in general would be more difficult, but doable. The programmer would have to devise a way to use only pitches that do not sound like “wrong notes” over each of the chord changes. One way to do this would be to set up a reference orbit for all passages in the melody that lie over a single chord, and to perform this for every chord.

Analysis and Conclusions  


The application of Dabby’s method to jazz improvisation produced very favorable results. Of the two standards attempted, the Blue Trane versions came out better, as the 16th notes present in the melody of Take Five caused 16th note syncopation, which in turn causes the solo to sound unsynchronized with the bass for a few extended periods. The bulk of material generated in the solo sections of the Blue Trane files is very coherent. Surprisingly, the solos sound similar to material Coltrane himself might have played. Dabby’s technique as applied to jazz improvisation can produce solos with heavily fragmented motivic development, which in many styles of jazz is preferred to smooth melodies.   


Although the sound files produced are much less interesting than an actual recording artist in musical terms, this variation procedure can be used for a number of practical purposes. First, the method can be used as an “idea generator”(Dabby 95) by creating pitch and rhythmic sequences with elements desired by the composer and chaotically varying these sequences to produce a large number of diverse options with minimal effort. Second, the method is very useful for creating ear-training exercises, especially for jazz. The variations produced will inevitably contain some element that is unique and new, and the large interval leaps and scattered rhythms would provide even the most experienced jazz musicians with valuable practice. Third, the method is a great exercise producer, as the difficult leaps and rhythms described above prove challenging on many instruments and are unlikely to be discovered under normal circumstances. 
The Pressing Method


In “Nonlinear Maps as Generators of Musical Design”, Jeff Pressing worked largely with the logistic map. Pressing found that by choosing values of a falling within a certain range, ‘quasi-chaotic behavior’ can be achieved, which acts like musical development in that the orbit begins with a periodic behavior, diverges from this behavior, and then ultimately returns to the same periodic behavior at some point. He used different logistic maps for each parameter, and he reported that he achieved interesting musical results. However, the parameter realization in parallel caused “the control of parameters [to be] too independent”(Pressing 40), causing Pressing to turn to higher dimensional maps for parameter control. 
Implementation


Experimentation with methods similar to Pressing’s yielded somewhat interesting results. Tracks 5 and 6 on the accompanying CD are a very fast logistic generation of major scale permutations and a melodic fragment in which the notes that the logistic equation mapped to are not derived from the chromatic scale, respectively. However, to generate actual musical pieces, I took a different approach. Rather than using first order equations for each parameter or attempting to unify every element of a system by choosing a chaotic mapping with the same number of variables as musical parameters, I chose to couple certain parameters in higher dimensional equations. The parameters that I thought were necessary for the type of musical work I desired to produce were note pool, dynamics, structure, melody, rhythm, and timbre. Harmony was derived in a contrapuntal fashion, in which each of the melody notes of the voices contribute to a chord that is arrived at melodically. 
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Melody and rhythm are a logical pair of parameters, so I chose to derive them from the same system, an orbit on the Henon map. I divided the y axis into four equal sections. Any point in [-2,0] caused the corresponding pitch to have a rhythmic value of one 1/8th note. Similarly, points in (0,1] were assigned a value of one ¼ note, and the points in (1,2] received a value of one ½ note. The x-axis was divided into 12 equal parts, corresponding to the 12 notes in the chromatic scale. Each interval was assigned a note from the note pool, and any point within a given interval was assigned the pitch dictated by that interval’s assigned note pool value. The attractor of this map spans a large interval and associates certain notes with certain rhythms as it does not fill this interval completely. This quality of the Henon map proved to be musical, as the narrowing of possibilities of rhythmic value for a given pitch caused more theme-like patterns to emerge in the music. (See Figure 2)
Note pool refers to the notes that the melodic chaotic mapping can draw from. The logistic equation was a logical choice, as it is first order and note pool need not be coupled with any other parameter. A value of a=4 was used to ensure that the mapping was chaotic, so that the note pool would be continuously evolving. In my project, the x-axis was divided into 13 equal parts, the first assigning a rest to the note pool, and each other interval corresponding to a note in one octave of the chromatic scale, expressed in half steps above a fundamental pitch. For a given iterate of the Henon map n, the note pool included points n through n+11. This resulted in a constantly evolving note pool, which contributed to the structure of the piece. (See Figure 3)
I chose not to directly specify structure from a chaotic equation in any of the pieces I created, as a chaotic structure is generally difficult to listen to. Instead, I manually set up the entrances of each of the voices, and dictated the dynamic progression in the music using a well-known tool in chaos, the bifurcation diagram. The shape of this diagram lends itself well to dynamics, as its top constantly rises to a point, and it eventually breaks into chaotic behavior. I followed the top of the diagram and directly generated the volume of each voice with the square of the x-value of the greatest periodic point through period 8. After period 8 was reached, the volume for a given a value was assigned to the square of the 100th iterate of a logistic equation for a given a value. This section was somewhat of a development section, as voices become loud and soft very quickly, and once chaotic values were reached (near a=4), the variability of the volume reached a maximum, suggesting a developmental climax. The overall form of the dynamic form of the piece was derived from increasing a from 2.9 to 4 in the first half of the piece, slowly decreasing a from 4 to 3.5 for the third quarter, and decreasing a from 3.5 to 0 in the fourth quarter, creating a crescendo, development, diminuendo dynamic structure. (See Figure 4)

The timbre of the voices was derived from a chaotic Lorenz equation. For each point in the trajectory, the sum of the coordinates was calculated. The first overtone of the pitch dictated by the corresponding point was multiplied by z divided by the sum of the coordinates, and the second and third overtones were dictated by x and y, respectively. This was a natural fit, as z is most of the time much larger than x and y, just as the first overtone is usually louder than the second and third overtones. 
Track 7 uses all of the processes described above. The note pool is unified; that is each voice draws from a note pool generated by a single initial condition. Every other parameter varies across voices; that is each is assigned a slightly different initial condition. Track 8 unifies the element of rhythm, but retains the rest of the parameter generation methods of Track 7. Track 9 discards chaotic note pool generation and dynamics, and instead has a user-defined note pool and dynamic structure. For a full version of the code for Track 7, see Appendix C. 
Analysis and Conclusions


Of the pieces generated, Tracks 7 and 9 seem to be the most musical. There are themes in both that seem to drive the pieces forward. Track 8 is less interesting because the chords and themes that show up happen to be less musically appealing. Changing initial conditions slightly would produce very different pieces, and would likely alter their appeal. Track 7 begins to push the limit of what the human ear can handle, so it seems necessary that there always be some user-controlled parameters for the music to retain musicality. The method I devised could be expanded to any number of voices, and to create successful musical works could be expanded to allow for increased development and improved structure of the pieces produced. Generation of conventional music with chaotic mappings has the potential to create very interesting, enjoyable music. 
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Figure 1: Reference(+) and solo(·) orbits of Blue Trane with increased time-step.(xy-plane)





Figure 3:Note pool generator with  half-steps above fundamental 





Figure 2: Melody and rhythm generator with subdivisions shown





Figure 4: Dynamics with direction of progression along bifurcation diagram shown
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