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Properties of Julia Sets
Let 
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The Julia set for
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 is then defined to be the boundary of this set, 
[image: image11.wmf]():()

JfKf

=¶

. For example, if
[image: image12.wmf]2

()

fzz

=

, then 
[image: image13.wmf][

]

(){:1}

Kfzz

=£

 and 
[image: image14.wmf][

]

(){:1}

Jfzz

=<

, where 
[image: image15.wmf][

]

z

 represents absolute value, since clearly 
[image: image16.wmf]()0

k

fz

®

 iff 
[image: image17.wmf][

]

1

z

<

 and 
[image: image18.wmf]()

k

fz

®¥

 iff 
[image: image19.wmf][

]

1

z

>

.
Lemma 1: Given 
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Proof: Choose r large enough that if
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Further, if 
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 for some p, then we can apply Lemma 1 inductively to show that 
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Some fundamental properties of Julia sets follow quickly from this:
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3. 
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Proof:
1. With r given by Lemma 1, clearly 
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for some p, and since polynomials are everywhere continuous, 
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 for all w in some small neighborhood 
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2. By the lemma, 
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 have the same filled-in Julia sets and thus the same Julia sets.

3. Let 
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We say w is an attracting fixed point of 
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The following three statements are given without proof, as they rely on some fairly technical results from complex variable theory, specifically Montel’s Theorem about normal families of complex analytic functions, which implies that
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 is not normal at z. However, they give useful characterizations of  general Julia sets, so are worth mentioning.
In particularly, they rely on the result that for any 
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Theorem 1: Let w be any attracting fixed point of
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As a simple example of the first two statements, consider our previous example, 
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 on the unit circle, iterating  f  corresponds to rotating by 
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The Mandelbrot Set

We now focus our attention on the specific class on functions
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 each chosen with probability ½. However, it takes many iterations to fill the entire Julia set, as points tend to cluster around certain regions.
Note that our choice of functions to examine is not as restrictive as it seems. Consider the transformation
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Now we are able to define the Mandelbrot set,
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Note M is a set in the parameter plane, not the normal complex plane where the Jc’s reside. We are ready to prove our main result of this section, using the following lemma.
Lemma 2: Let 
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1. Suppose 
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Theorem 4: Let M be the Mandelbrot set. Then the following are equivalent definitions:
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Proof: If we let 
[image: image175.wmf]2

r

=

, then we can apply Lemma 1 to show that these two definitions are equivalent to each other. We show that if 
[image: image176.wmf]1

{(0)}

k

ck

f

³

 is bounded, then 
[image: image177.wmf]c

J

 is connected, and for the reverse inclusion, we show that if
[image: image178.wmf](0)

k

c

f

®¥

, then 
[image: image179.wmf]c

J

 is disconnected. We write 
[image: image180.wmf]1

-

G

 for 
[image: image181.wmf]1

()

c

f

-

G

, and 
[image: image182.wmf]k

-

G

 for 
[image: image183.wmf]1

()()()

kk

cc

ff

--

G=G

.

[image: image184.wmf]().

Ê

Assume
[image: image185.wmf]1

{(0)}

k

ck

f

³

 is bounded, and let 
[image: image186.wmf]0

G

 be a circle large enough to completely enclose 
[image: image187.wmf]1

{(0)}

k

ck

f

³

, with the additional properties that all points outside 
[image: image188.wmf]0

G

 are in
[image: image189.wmf]()

B

¥

 and that 
[image: image190.wmf]1

0

()

c

f

-

G

 lies in the interior of 
[image: image191.wmf]0

G

. Since 
[image: image192.wmf](0)

c

cf

=

, we must have c inside 
[image: image193.wmf]0

G

. By Lemma 2.1, 
[image: image194.wmf]c

f

 maps 
[image: image195.wmf]1

Int

-

G

 to 
[image: image196.wmf]0

Int

G

, so since
[image: image197.wmf]2

()(0)

cc

fcf

=

, we must also have c inside 
[image: image198.wmf]1

-

G

. We proceed inductively, applying the lemma at each stage. For 
[image: image199.wmf]k

Î

¥

, 
[image: image200.wmf]1

(1)

()

kck

f

-

-+-

G=G

, and at each k, 
[image: image201.wmf]Int

k

c

-

ÎG

 since 
[image: image202.wmf]1

0

(0)Int

k

c

f

+

ÎG

, so
[image: image203.wmf]1

(0)Int

k

c

f

-

ÎG

, so
[image: image204.wmf]1

2

(0)Int

k

c

f

-

-

ÎG

, and so on. Thus we construct an infinite series of nested loops, each contained in the interior of the last. 
Let 
[image: image205.wmf]Int

nnn

K

--

=GÈG

, and let 
[image: image206.wmf]0

j

j

KK

¥

=

=

I

. By our choice of 
[image: image207.wmf]0

G

, any point outside 
[image: image208.wmf]n

K

 for some n must iterate to infinity, so it follows that 
[image: image209.wmf]()\

BK

¥=

£

. But then the filled-in Julia set
[image: image210.wmf]c

K

 is exactly K.

So 
[image: image211.wmf]()(\)

cc

BKKKJ

¶¥=¶=¶=¶=

£

. From a basic result in topology, a nested sequence of compact connected sets has connected intersection and boundary, so we see that 
[image: image212.wmf]c

J

 is connected, as desired.

[image: image213.wmf]().

Í

 Assume
[image: image214.wmf]1

{(0)}

k

ck

f

³

 is unbounded, i.e. 
[image: image215.wmf](0)

k

c

f

®¥

. Then let 
[image: image216.wmf]0

G

 be a circle large enough that all points outside 
[image: image217.wmf]0

G

 are in
[image: image218.wmf]()

B

¥

, 
[image: image219.wmf]1

0

()

c

f

-

G

 lies in the interior of 
[image: image220.wmf]0

G

, and that for some value of p, we have
[image: image221.wmf]1

0

()(0)

pp

cc

fcf

-

=ÎG

 with 
[image: image222.wmf]0

(0)Int

k

c

kpf

<ÞÎG

 , and 
[image: image223.wmf]0

(0)Ext

k

c

kpf

>ÞÎG

. We begin just as in (1), constructing a series of nested loops
[image: image224.wmf]{}

k

-

G

, but when we get to 
[image: image225.wmf]kp

=

, where c lies on the curve 
[image: image226.wmf](1)

p

--

G

 instead of interior to it and Lemma 2.1 no longer applies. From now on we apply Lemma 2.2, so we get that 
[image: image227.wmf]p

-

G

 is a figure-8, with 
[image: image228.wmf]c

J

 contained in its interior. Since we have the one-to-one correspondence between inverse images given by the lemma, each leaf of the figure-8 contains points of 
[image: image229.wmf]c

J

, and thus 
[image: image230.wmf]c

J

 is disconnected.
Note we can actually do better than this and make our original definition of M more robust. If  
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See Appendix A for an illustration of the general idea behind this proof.
Periodic Orbits and the Structure of M
The large cardioid that comprises the bulk of the Mandelbrot set corresponds to those values of c where
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 becoming increasingly complex as c approaches the boundary of the cardioid. We use this characterization to solve for its boundary explicitly.
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Similarly, we can solve explicitly for the circular bulb to the left of the main cardioid by noting that it corresponds to values of c where
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 has an attracting fixed point. Then for z in the circular region, 
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Roots of the second term on the right are just the fixed points of 
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, which makes sense because fixed points of 
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 be the roots of the first term on the right. The product of the two roots is the constant term, so we get 
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. Since they are attracting, we know that 
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, and equating these gives the condition 
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, the boundary of which is indeed a circle of radius ¼ centered at 
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Note the correspondence shown below between points in the parameter plane where the bulbs of the Mandelbrot set are attached to the largest adjacent bulb and the bifurcation points of the logistic map. In the large cardioid, we correspond to stable orbits of 
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, in the period-2 bulb, we correspond to period-2 orbits, and similarly all the way down the period-double cascade in the logistic map until it dissolves into chaos and the Mandelbrot set is a segment of the 
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 axis. The cardioid of the smaller copy of M centered around 
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corresponds to the stable period-3 region that arises in the bifurcation plot, and similarly for the period-doubling cascade following it, and so on. It is theoretically possible to solve for the bounds of any bulb on the Mandelbrot set using similarly descriptive conditions on periodic orbits of 
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, but the complexity of the relevant equations scale up inordinately quickly for efficient computation. As we move along the negative 
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 axis, the next largest copy of M will a period-4 region in its cardioid, and so on. Note the periods of the bulbs on all these smaller copies are exactly the same as that of the corresponding bulb on the whole of M, except multiplied by the period of main cardioid in the copy.
M, plotted in black on the parameter plane 
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Bifurcation diagram of the map 
[image: image273.wmf]2

()

gxxc

=+

:

Extending this, all of the bulbs on the Mandelbrot set can be put in a correspondence with the existence of periodic orbits for a given period, but this correspondence turns out to be extraordinarily detailed. For example, in the equation previously given for the boundary of the main cardioid, 
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, we observe that 
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, the point given by 
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is exactly where a period-k bulb is connected to the main cardioid. (We just demonstrated this for the 
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 bulb) Thus we see that as we travel towards the origin along the boundary of the main cardioid starting at 
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, the next largest bulb (the topmost one) is the period-3 bulb, the next largest the period-4, and so on. Immediately we know we can find values of c which give stable periodic orbits of any given period, a hallmark of chaos, though we are in parameter space and thus ranging over a family of related functions instead of ranging over initial values for a single function. Moreover, given any two bulbs of period p and q, the period of the largest bulb between them is always given by
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Right: The primary bulbs of M, labeled according to their period. Note the behavior as described above.
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We can also determine the period of a bulb just by looking at it, either in the parameter plane or by looking at a Julia set for some c value in the bulb. In a period-k bulb, there will always be a large spindly arm extending away from the bulb that separates into several smaller arms. The number of arms that meet at this intersection is always exactly the period, k. Moreover, the filled-in Julia set at c will have a large central region symmetric about the origin, pinching down on either side to a single point where several smaller buds meet. Since Julia sets are fractals, self-similarity assures that this happens on all of these secondary buds as well, but the largest ones are sufficient to determine the period. As expected, there are exactly k buds meeting at each of these points (so removing any one of them disconnects 
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 into k disjoint pieces. 
We illustrate this below for several bulbs on the Mandelbrot set:
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Period 3
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Period 5
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Period 4
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Period 7

The same behavior, this time using Julia sets to determine period:
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Period 2, 
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Period 5, 
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Period 4, 
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 Period 7, 
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This correspondence between location and periodic orbits goes considerably deeper. Instead of assigning each bulb an integer k that corresponds to the existence of a stable period-k orbit of 
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f

 for values of c in the bulb, we assign each bulb a rotation number 
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 for integer values of k), we say 
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. For rotation numbers, the denominator n corresponds to the period, and if we let 
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 be the stable orbit, we let the numerator m be the number such that 
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We can still determine rotation numbers by looking at the bulb in the Mandelbrot set or the Julia set of and appropriate value of c. In the Mandelbrot set, consider the spike complex that we used to determine period. The shortest spike counterclockwise from the main one connected to the bulb is the 
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 one. Analogously, in the Julia sets, the smallest of the n buds counterclockwise from the main one is the 
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 one.
Thus referring back to our previous examples and reading left-right, top-bottom, the rotation numbers of the Mandelbrot set bulbs are given by 1/3, 1/4, 2/5, and 3/7. In the Julia set examples, rotation numbers are given by 1/2, 1/4, 1/5, and 1/7. Note for Julia sets, it is difficult to tell if a bulb is primary or not, and in general one must check where the c value actually lies in the parameter plane to check this.
It is easy to see that points where bulbs attach to the main cardioid of the Mandelbrot set are dense on its boundary. Amazingly, the set of points where the bulb of rotation number 
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 attaches to the cardioid are ordered precisely by the natural order of the rationals. Since M is symmetrical with respect to the 
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axis, we can imagine traversing the around boundary of the main cardioid starting and ending at the origin, and at every rational point 
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we will hit a bulb of rotation number 
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Also, note that we can generalize rotation numbers of primary bulbs to bulbs of arbitrary order by analogous definitions, where a k-ary bulb defined recursively as a bulb attached by a point to a (k-1)-ary bulb and primary bulbs the ones touching the main cardioid by assigning k-ary bulbs a k-tuple of rotation numbers in 
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To expand on this, we can still calculate rotation numbers from the rotation numbers of nearby bulbs in a similar fashion as we had for periods. Given bulbs with rotation numbers 
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, the naïve definition of addition in the rational numbers. There is an explanation for this occurrence, however. This type of addition is relevant in number theory, where it is termed Farey addition, and it describes the relationship that given two (proper) fractions 
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 with lowest denominator. This makes sense with our description of how the rotation numbers ordered the bulbs along the boundary of the main cardioid in the same manner that 
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 is ordered as a field.
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Right: an illustration of Farey addition for rotation numbers of bulbs in the Mandelbrot set, (e.g. 
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Finally, because of this structure of how rotation numbers and periods are located around the boundary of the cardioid, we can provide geometric trajectories around the parameter plane that represent nearly any algebraic sequence we wish:
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Right: For example, we can represent the familiar Fibonacci sequence 
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 by starting with 
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 the period-2 bulb, and then taking 
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 to be the period of the next largest bulb clockwise around the boundary, 
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 the period of the next bulb counterclockwise, and so on, so we always consider the largest bulb between the previous two.
The Mandelbrot Set and π
The following procedure describes an embedding of 
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 in the structure of the Mandelbrot set, which needless to say, is very surprising, considering that M is generated by the dynamics of a quadratic system. Suppose we wish to verify that the period-2 bulb is indeed only attached to the main cardioid at a single point, namely 
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We know if 
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 for any k, then 0 must escape to infinity, so 
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Here 
[image: image351.wmf]()

j

Nc

e

 represents the number of iterations required until 
[image: image352.wmf](0)2

j

k

c

f

³

 for each 
[image: image353.wmf]j

c

. Near 
[image: image354.wmf]1

0.750

ci

=-+

, we see that 
[image: image355.wmf]1

0

lim()

Nc

e

e

ep

®

×=

, and near 
[image: image356.wmf]2

¼

c

=

, 
[image: image357.wmf]2

0

lim()

Nc

e

e

ep

®

=

. In both cases, the convergence is exponential, but we show twice as many values of 
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[image: image362.wmf]22

()

Lc

l

®

 gives a trajectory entirely along the 
[image: image363.wmf]Re()

c

 axis, we show this only for 
[image: image364.wmf]2

c

. Similar methods could be applied around 
[image: image365.wmf]1

c

, but the calculations would no longer be involving only real numbers and thus become much more complicated. 

The basic idea here is we exploit the previously discovered connection between key structural points in the Mandelbrot set and bifurcation points of real-valued functions. First consider 
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We interpret this as a local linear approximation for the equation 
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Equating these results, we obtain the differential equation 
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An antiderivative of the integrand on the left is given by 
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. We originally wanted to solve for the value of 
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Since 
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Right: Cobweb plot of 
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Similarity between Julia sets and M
Consider the following picture:
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In the top two pictures, we have the Mandelbrot set, overlaid by the result of magnification about the point 
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 in the parameter plane.

In the bottom two pictures, we have the Julia set for 
[image: image402.wmf]0.7454290.113008

ci

=-+

, overlaid by the result of magnification about this same point in the complex plane. Note that the top zoom into the Mandelbrot is by a factor of 
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, while the bottom zoom into the corresponding Julia set is by a factor of 
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 and rotated by 
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. Still, the similarity cannot be a coincidence, and it is immediately obvious that something very bizarre and very deep is at work, since the two plots not only are displaying different objects, but are plotted in a completely different plane. 
In general, this phenomenon is not well-understood, but at certain points in the plane, rigorous results have been proven. For complex values of
[image: image406.wmf]i

re

q

r

=

, we can consider multiplication by
[image: image407.wmf]r

to represent magnification by
[image: image408.wmf]1

r

>

and rotation through
[image: image409.wmf]q

. We say a set A is self-similar at z if 
[image: image410.wmf]0

r

$>

 such that 
[image: image411.wmf]()()

NzANzA

ee

r

Ç=Ç

 for all 
[image: image412.wmf]0

r

e

<<

. In the case of M and 
[image: image413.wmf]c

J

, the local structures are too complex to demonstrate this kind of self-similarity, but the limit objects of repeated magnification may. So we extend this and say a set A is asymptotically self-similar at z if there is some scaling factor
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, where 
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 is elementwise subtraction. For example, a circle passing through the origin is asymptotically self-similar all points on it. Under any scaling factor, the intersection of the circle is an arc which straightens out under repeated scaling and has limit object equal to the line segment from 
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For the iterated system 
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, define an initial point 
[image: image421.wmf]0

z
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. Note m cannot be 0, we want to pick out those initial values which are strictly eventually periodic. We define a parameter 
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1. If c is a Misiurewicz point, then the corresponding periodic orbit is repelling

2. If c is a Misiurewicz point, then 
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, i.e. the Julia set has no interior and thus forms a dendrite (deformed line segment with 0 or 
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3. Misiurewicz points are dense in the boundary of M
By a theorem of Tan Lei (1989), if c is a Misiurewicz point, then the Julia set 
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, and moreover, the associated limit objects are the same up to some rescaling and rotation. 
Consider the point 
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 in the parameter plane both give limit objects of a ray pointing right. Any scalar greater than 1 is sufficient for
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For a more interesting example, consider 
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 is a Misiurewicz point, and the scaling factor is given by 
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Thus we should expect that continually zooming into 
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 and zooming into M about 
[image: image445.wmf]ci

=

by a factor of 
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 and rotating through 
[image: image447.wmf]45

°

 should produce similar images. Indeed, we see this in the following:
Illustration of behavior near the Misiurewicz point 
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:
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In the top figures, we start with the full Mandelbrot set and zoom in on the marked box three times, centered at 
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, each time by a factor of 
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 and rotating through 
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. In the bottom figures, we start with the Julia set 
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 and zoom in on the marked box, centered at 
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, three times by the same magnification and rotations. Notice that after zooming in by a factor of only
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, the objects look almost the same. Also, every 8 times we zoom in again, we will end up with the object, since 
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Finally, there is one point we have glossed over here. By self-similarity of M, we should expect to find miniature copies of M everywhere in it, seemingly contradicting our result that M looks like J on small scales, since clearly J can contain no such structures. However, when you zoom in according to powers of R, these copies of M scale down in size proportionally to R2, so they quickly disappear in the limit object.
Other Notes of Interest
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 , we can apply this line of reasoning in reverse to define a (decreasing) series of curves that each enclose M given by 
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Graphically, these curves approach and become increasingly convoluted for large values of k. It is conjectured that 
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is actually given by the limit behavior 
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but this is not known. Note that this means 
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can be obtained by collapsing arcs on a circle, and thus is equivalent to the conjecture that 
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is pathwise connected. (
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is only known to be connected) Shown at the right are the first few lemniscates in the series M1 through M6.
By a theorem of Shishikura (1994), we have that 
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has Hausdorff dimension 2. Thus the structure of the Mandelbrot set in a sense is “maximally” complex, since the (fractal) dimension of the boundary is exactly equal to the dimension of the set itself.

As a final curiosity, consider generalizing the Mandelbrot set to reflect
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 for values of n other than 2. For 
[image: image466.wmf]1

n

=

, we just get {0}. For 
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, we get something similar to M, except the main cardioid is no longer a cardioid but exhibits radial symmetry about the rays 
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 roots of unity. Thus, we can relate the generalized Mandelbrot set of “order” n to the dihedral group of order 
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. If we replace 
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 by its conjugate 
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, the resulting Mandelbrot set still obeys this property, but instead of the large central region having bulges along 
[image: image473.wmf]1

n

z

-

, we have thin bars along 
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Above: generalized Mandelbrot sets for 
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, 
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, and 
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; (top) 
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 (bottom).
Appendix A
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In the top figure, we see a graphical interpretation of the preceding proof for connected Julia sets, with a series of loops squeezing down onto the limit curve,
[image: image482.wmf]c

J

, and on the bottom figure, we see an illustration of the proof for disconnected Julia sets, where eventually we get a series of nested figure-8 curves, forcing 
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 to be disconnected.
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