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Suppose fn : Ω→ R or fn : Ω→ C is a sequence of real or complex functions, and
fn → f as n → ∞ in some sense. Furthermore, suppose we know that fn all have
certain properties. What can we say about properties of f?

It turns out, that, at least for certain notions of convergence, we cannot really say
anything about f . In order for limits of functions to preserve useful properties, like
continuity or integrability, we need a certain type of convergence of functions known
as uniform convergence.

1. Uniform Convergence

If fn : Ω → R (everything works the same for C) is a sequence of functions, we
say that fn converges to f pointwise on Ω if, for each x ∈ Ω, fn(x) → f(x). In
other words, once we fix x, the sequence fn(x) has a limit, and we declare f(x) to
equal that limit. This is probably the most naive and obvious definition of what it
means for a sequence of functions to converge to a limit. Unfortunately, this notion
of convergence is weak, in the sense that the limiting procedure fails to preserve a
variety of useful properties:

• Suppose all the fn are continuous on Ω. If fn → f pointwise, then f may
not be continuous. For example, consider fn(x) = xn,Ω = [0, 1]. Then fn
pointwise converges to the function f(x) where f(x) = 0, 0 ≤ x < 1, f(1) = 1.
Obviously this function is not continuous at x = 1. If the fact that this
discontinuity is at an endpoint of a closed interval bothers you, it is easy
to modify this example so the discontinuity occurs at an interior point (just
symmetrically extend fn to [0, 2]).
• The above example also makes it clear that if the fn are differentiable, then

its pointwise limit may not be differentiable.
• A homework problem provides an explicit example of a sequence of functions
fn defined on a closed interval I which pointwise converges to f on I, but for
which

lim
n→∞

∫
I

fn dx 6=
∫
I

f dx.

In other words, in general it is not possible to interchange a limit and an
integral sign. Actually, it is not even clear that the integral on the right
exists (namely, a pointwise limit of Riemann-integrable functions may not be
Riemann-integrable).
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Because pointwise convergence fails to preserve a variety of useful properties, we
will define a stronger notion of convergence, and then prove that some of these prop-
erties are preserved under uniform convergence. However, certain properties still will
not be preserved under uniform convergence; evidently limit processes can destroy
lots of useful properties!

Suppose fn : Ω→ R is a sequence of functions and f : Ω→ R is another function
such that for all ε > 0, there exists an N = N(ε) such that for all n > N, |fn(x) −
f(x)| < ε for all x ∈ Ω. Then we say that fn converges uniformly to f on Ω. When
we write N = N(ε), we emphasize the fact that while N is allowed to depend on ε,
it does not depend on x.

What’s the difference between this definition and pointwise convergence? We can
rewrite the definition of pointwise convergence as saying that for each x ∈ Ω and
ε > 0, there exists some N = N(ε, x) such that for all n > N, |fn(x) − f(x)| < ε.
The difference is that in the uniform convergence definition, the N in that definition
only depends on ε and not on x, while in the pointwise definition, N is allowed to
depend on both ε and x.

Although this might seem like a minor difference, it actually makes a huge differ-
ence. In mathematics, uniformity usually refers to the property of a certain parameter
not depending on another parameter – in this case, in the definition of uniform con-
vergence, the parameter N does not depend on x. In many situations, uniformity is
a good property to have, although its specific consequences vary from situation to
situation.

The following more geometric interpretation of uniform convergence might be use-
ful. The property that |fn(x) − f(x)| < ε for all x ∈ Ω can be geometrically repre-
sented by saying that the graph of fn(x) is always within a band of width ε in either
vertical direction of the function f(x).

Examples.

• If fn converges uniformly to f , then fn also converges pointwise to f . This
is an exercise in the homework. In particular, to test whether fn converges
uniformly to some function, it suffices to first check if this sequence converges
pointwise to f , and then to check whether f is the uniform limit of fn.
• Let us directly check that the sequence of functions fn(x) = xn does not

converge uniformly to its pointwise limit f(x). (Recall that f(x) = 0 if
0 ≤ x < 1, f(1) = 1.) Select any ε < 1, like ε = 1/10, say. We claim there is
no N such that |fn(x)− f(x)| < 1/10 for all x ∈ [0, 1]. Indeed, if there were,
then fn(x) < 1/10 for all x ∈ [0, 1), since f(x) = 0 for x ∈ [0, 1). But clearly
this is false, since fn(x) is a continuous function on [0, 1], and fn(1) = 1, so
that for x close to 1, fn(x) > .1.

Are there any convenient criteria for determining whether a sequence of functions
uniformly converges? There are a few, but we will primarily be interested in one
criterion, which we will apply to power series inside its disc of convergence. We say
that a series

∑
fn uniformly converges to f if its partial sums uniformly converge to

f .

Theorem 1 (Weierstrass M-test). Let fn : Ω → C be a sequence of functions. Sup-
pose there exist a sequence of non-negative real numbers Mn such that |fn(z)| ≤ Mn



UNIFORM CONVERGENCE 3

for all z ∈ Ω and
∑
Mn converges. Then

∑
fn uniformly converges on Ω to a func-

tion f(z).

Proof. First we check that
∑
fn(z) pointwise converges. Indeed, for a fixed z, we

have
∑
|fn(z)| ≤ Mn < ∞ converges, so that

∑
fn(z) converges absolutely, and

hence converges to some limit, which we call f(z). Then
∑
fn(z) pointwise converges

to f(z).
We now check that

∑
fn(z) uniformly converges to f(z). Let ε > 0 be arbitrary,

and let sn(z) =
∑n

k=0 fk(z) be the nth partial sum of
∑
fn(z). We want to show

that there exists some N such that for all n > N , |f(z) − sn(z)| < ε for any z ∈ Ω.
Notice that

|f(z)− sn(z)| =

∣∣∣∣∣
∞∑

k=n+1

fk(z)

∣∣∣∣∣ ≤
∞∑

k=n+1

|fk(z)| ≤
∞∑

k=n+1

Mk.

Recall that
∑∞

k=1Mk converges to some limit, so this means that for n sufficiently
large,

∑∞
k=n+1Mk < ε. So select N to be a bound for this to be true. �

Example. One of the most useful applications of the Weierstrass M-test is that
it shows a power series uniformly converges in any closed disc contained in its disc
of convergence. Suppose

∑
anz

n is a power series with radius of convergence R,
and let Ω be any closed disc |z| < R′, where R′ < R. Recall that in the proof of the
theorem which shows the existence of the radius of convergence, we saw that

∑
anR

′n

is bounded from above by a convergent geometric series
∑
rn. (The exact argument

involved using properties of lim sup.) In particular, in the course of that proof we
showed that |anzn| < crn whenever |z| ≤ R′, where r < 1 is some real number
(which does depend on R′, but not on |z|) and c some real constant depending on
R′. Therefore we can take Mn = crn in the Weierstrass M-test.

2. Properties of uniform convergence

Now that we’ve defined what uniform convergence means, and saw a few examples
of sequences/series of functions which did and did not uniformly converge, let’s prove
some of the basic properties of uniform convergence. First, we will show that the
uniform limit of a sequence of continuous functions is still continuous (unlike the
fn(x) = xn example):

Proposition 1. Suppose fn converges uniformly to f on Ω. Then f is continuous
on Ω.

Proof. The method of proof is a simpler version of the proof that a power series can
be differentiated term-by-term. We want to show that f is continuous on Ω, so this
means given any a ∈ Ω, we want to show that for any ε > 0, there exists some δ > 0
such that if |x− a| < δ (and x ∈ Ω), then |f(x)− f(a)| < ε.

The way we will prove this is by writing |f(x)−f(a)| in a slightly funny way, apply
the triangle inequality, and then use the hypotheses to individually bound each of
the remaining pieces. (If you look at the proof of the fact that power series can be
differentiated term-by-term, the strategy is exactly the same.) More precisely, we
write
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|f(x)− f(a)| = |(f(x)− fn(x)) + (fn(x)− fn(a)) + (fn(a)− f(a))|
≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)|.

First, because f(x) is the uniform limit of fn(x), we know that there exists an N
such that for all n > N , |f(x) − fn(x)| < ε/3 for all x ∈ Ω. But we also know
that each fn is continuous, so there exists some δ > 0 such that for all |x − a| < δ,
|fn(x)− fn(a)| < ε/3. (It is possible that δ depends on n.)

So, in summary, given ε > 0 and x ∈ Ω, select n large enough so that both
|f(x) − fn(x)| < ε/3, |f(a) − fn(a)| < ε/3. This is possible because of uniform
convergence. Next, select δ > 0 such that |x− a| < δ implies |fn(x)− fn(a)| < ε/3.
Then |f(x) − f(a)| < ε if |x − a| < δ, by adding up these three bounds on the
inequality above.

�

The second result we prove is that interchange of a uniform limit of functions with
an integral over a finite interval (versus an improper integral, like an integral over R)
is allowed. A homework exercise asks you to generalize this to contour integrals.

Proposition 2. Suppose fn : [a, b]→ R is a sequence of continuous functions which
converges uniformly to f on [a, b]. Then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

(Actually, the theorem is still true for fn just Riemann-integrable, but we use this
more restrictive version because the proof has fewer technical details in it, and the
continuous version will be general enough for our purposes.)

Proof. We already have shown that f is continuous, hence integrable. Notice that∣∣∣∣∫ b

a

f(x)− fn(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)− fn(x)| dx.

However, we also know that given ε > 0, there exists N such that |f(x)− fn(x)| < ε
for n > N . Therefore, when n > N ,∣∣∣∣∫ b

a

f(x)− fn(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)− fn(x)| dx ≤ (b− a)ε.

Since b − a is finite, this implies that limn→∞
∫ b

a
f(x) − fn(x) dx = 0, which is what

we wanted to prove. �

The contour integral version of this proposition is the primary reason why we are
interested in uniform convergence: in one of the next major theorems we prove we
will want to be able to justify switching a limit and integral operation.

As a matter of fact, you can check that on the question on last week’s HW which
required justifying limit and integral, that setup is just a special case of the contour
integral version of this proposition: in other words, knowing this theorem would
have saved a substantial amount of work! (On the other hand, if you did carefully
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justify why switching limit and integral was legal, you basically did this proof for
that particular example.)

Finally, one might ask whether uniform limits preserves differentiability, and if the
limit of derivatives is the derivative of the limit. Unfortunately, in general the answer
is no, as the following example shows:

Example. Let fn = 1
n

sinnx. Then fn uniformly converges to f(x) = 0 on x ∈
[0, 2π], say: indeed, notice that |fn(x) − 0| < 1/n for all x ∈ R. However, f ′

n(x) =
cos(nx), which does not pointwise converge to any function, let alone converge to
f ′(x) = 0.

There is a slightly more restrictive case where uniform limits does preserve differen-
tiability, however. We mention the theorem more out of completeness than anything
else:

Proposition 3. Suppose fn uniformly converges to f on (a, b), and f ′
n converges

uniformly to g on (a, b). Then f is differentiable, and f ′ = g.

The reason the last example does not contradict this proposition is because the
derivatives of fn did not uniformly converge (let alone pointwise converge) to any
function.

Actually, another reason for mentioning this proposition is that we will see the
situation with holomorphic functions is much simpler: a uniform limit of holomorphic
functions is always holomorphic, and we can interchange the limit and differentiability
operations. This is one example of how holomorphic functions are more well-behaved
than their real differentiable counterparts.
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