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We will now discuss basic properties of power series, which should be familiar from
single-variable calculus. The difference is that we will now think of power series as
defining complex functions. Power series will provide a large source of holomorphic
functions, and we will see that power series play a key role in understanding properties
of holomorphic functions.

1. Introduction to power series

In real calculus, a power series centered at a real number a is an expression of the
form

∞∑
n=0

an(x− a)n,

where the an are real numbers. A power series can be thought of as a generalization
of a polynomial, but unlike polynomials power series do not necessarily converge at
all points x. Indeed, a large part of single-variable calculus is devoted to answering
questions of when power series converge.

In complex analysis, we define power series in a formally identical way to the real
case: namely, a power series centered at a complex number z0 is an expression of the
form

∞∑
n=0

an(z − z0)n,

where now we permit an to be complex numbers. Notice that for any complex number
z, this infinite series is a series of complex numbers, which either converges or diverges.
A natural question is to determine the set of complex numbers z for which a given
power series converges. For convenience, we will let z0 = 0 for the rest of this
discussion on power series, although everything works for power series centered at an
arbitrary z0.

Examples.

• Any complex polynomial f(z) = a0 + . . .+ anz
n can be thought of as a power

series which converges for all z.
1
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• The power series 1 + z + z2 + . . . converges on the open disc |z| < 1, and is
equal to 1/(1− z) on this disc. Indeed, since

1 + z + . . .+ zn =
1− zn+1

1− z
,

this series only converges if zn+1 converges to a limit as n → ∞, and this
only happens if |z| < 1, or if z = 1. However if z = 1 the it is clear that
1 + z + z2 + . . . does not converge.
• The power series

1 + z +
z2

2!
+
z3

3!
+ . . .

is equal to the exponential function on the real line. As a matter of fact, we
can define ez for complex z by declaring it equal to this power series. We will
return to this idea later.

Recall from real calculus that every power series has a ‘radius of convergence’ R,
which is a real number (or possibly infinity) such that

∑
anx

n converges absolutely if
|x| < R and diverges if |x| > R. A generalization of this fact holds true for complex
power series:

Theorem 1. Let f(z) =
∑
anz

n be any power series. Then there exists an R which
is either a non-negative real number or infinity, such that f converges absolutely if
|z| < R and f diverges if |z| > R. Furthermore, 1/R is equal to lim sup |an|1/n. (If
R = 0, we interpret the limsup as tending towards infinity, and if R =∞, we interpret
this limsup as equalling 0.) We call the open disc |z| < R the disc of convergence of∑
anz

n.

Proof. Let L = 1/R. Suppose |z| < R. We want to show that
∑
|an||z|n con-

verges. Since |z| < R, we can choose a ε > 0 such that (L + ε)|z| < 1. Since
L = lim sup |an|1/n, this means that for sufficiently large n, |an|1/n < (L + ε), or
|an| < (L+ ε)n. Therefore,∑

|an||z|n ≤
∑

(L+ ε)n|z|n ≤
∑

((L+ ε)|z|)n.
However, the last series is a convergent geometric series. Therefore

∑
|an||z|n con-

verges.
Now suppose |z| > R. By the definition of limsup, for any ε > 0 there exists

infinitely many an satisfying |an|1/n > (L−ε), or |an| > (L−ε)n. Choose ε > 0 small
enough such that (L− ε)|z| > 1. Then |an||z|n > (L− ε)n|z|n for infinitely many n,
and because (L− ε)|z| > 1, this implies that anz

n does not converge to 0 as n→∞.
Therefore

∑
anz

n must diverge. �

Notice that the basic principle in this proof is to try to bound a series which we
know very little about by a geometric series, which we fully understand. This is a
frequent technique in analysis.

Exercise 17 in the textbook shows that if lim |an+1|/|an| approaches a limit L, then
lim sup |an|1/n = L as well, so if the ratio test is usable (ie, if the limit of ratios of
terms exists), then we can use it to find the radius of convergence. This is usually
what happens in calculus classes (although sometimes the root test is useful as well).
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Examples.

• Consider the power series 1− z2 + z4 − . . . = 1
1+z2

. Since |an| = 1 if n is even

and 0 if n is odd, lim sup |an|1/n = 1, so this power series converges for all
|z| < 1. Notice that viewed as a geometric series of a complex variable, that
this power series has radius of convergence 1 makes sense: when it converges it
equals the function 1/(1+z2), which is undefined at (really, getting arbitrarily
large near) z = ±i, so it would be impossible for this power series to have
radius of convergence larger than 1 since it would not even be defined at the
points ±i.
• Consider the power series for ez = 1 + z + z2/2! + z3/3! + . . .. Since an =

1/n!, and lim |an+1|/|an| = 1/(n + 1) = 0, this means that this power series
has radius of convergence R = ∞, so this power series converges for all z.
Similarly, the power series for cos and sin converge for all z.
• Alternately, in the power series for ez, if one wants to compute |an|1/n and

directly use the root test, one needs to be able to evaluate the asymptotic
behavior of (n!)1/n. This is done by means of Stirling’s formula, which states
that

lim
n→∞

n!√
2πnn+1/2e−n

= 1.

(In general, if lim f(n)/g(n) = 1, we frequently write f(n) ∼ g(n).) Therefore

lim
n→∞

(n!)1/n = lim
n→∞

√
2π

1/n
e−1n1+1/(2n) =∞,

which shows that the power series for ez is indeed convergent for all z.
• Determining whether a power series converges for |z| = R is a delicate ques-

tion. There is no way a priori of knowing whether convergence happens for all
such z, no such z, or some z. This question will not be of primary importance
to us, so if you are interested in learning more, consult the exercises in the
text.

2. Differentiating power series

An important result in real calculus states that, within a power series’ radius of
convergence, a power series is differentiable, and its derivative can be obtained by
differentiating the individual terms of the power series term-by-term. The same holds
true for complex power series:

Theorem 2. Let f(z) =
∑
anz

n be a power series with radius of convergence R > 0.
Then f is holomorphic for |z| < R, and its derivative is equal to the power series
f ′(z) =

∑
nanz

n−1, obtained by differentiating f(z) term by term. Also, f ′ has the
same radius of convergence as f .

Proof. First, notice that
∑
anz

n and
∑
nanz

n−1 have the same radius of convergence
because lim sup |an|1/n = lim sup |nan|1/n. Indeed, one can prove using single variable
calculus that limn1/n = 1. Fix z0 in the disc of convergence, so that |z0| < r < R
for some value of r. Let SN(z), EN(z) be defined by SN(z) =

∑
n≤N anz

n, EN(z) =∑
n>N anz

n. (You should think of SN , which consists of the lower order terms of the
power series, as a ‘main term’, and EN as an ‘error term’.) Let g(z) =

∑
nanz

n−1
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be the term-by-term derivative of f . We want to prove that f ′(z0) = g(z0), which
means that we want to show

lim
h→0

f(z0 + h)− f(z0)

h
− g(z0) = 0.

Rigorously, this means that given any ε > 0, we must show there exists a δ > 0 such
that if 0 < |h| < δ, then the expression above has absolute value < ε. To do so,
we will break the expression into three parts and estimate each of those separately
using some sort of information in the hypotheses of the theorem. More precisely,
since f(z) = SN(z) + EN(z), we will write

f(z0 + h)− f(z0)

h
− g(z0) =(

SN(z0 + h)− SN(z0)

h
− S ′N(z0)

)
+ (S ′N(z0)− g(z0)) +

EN(z0 + h)− EN(z0)

h
.

How does this help? Let’s analyze each term one-by-one. The first term is

SN(z0 + h)− SN(z0)

h
− S ′N(z0).

Since SN is just a polynomial, its derivative is S ′N . Therefore this term approaches
0 as h → 0. In other words, given ε/3 > 0, we can find δ > 0 such that 0 < |h| < δ

implies
∣∣∣SN (z0+h)−SN (z0)

h
− S ′N(z0)

∣∣∣ < ε/3.

The second term is S ′N(z0)− g(z0). Since S ′N(z0)→ g(z0) as N →∞ (because we
know that g(z) is a power series which converges absolutely for |z| < R, and S ′N(z)
is the Nth partial sum of this power series), this means that for any ε/3 > 0, we can
find some N1 such that if N > N1, then |S ′N(z0)− g(z0)| < ε/3.

The third term is the most tricky to estimate effectively. We can write EN(z0 +
h) − EN(z0) =

∑
n>N an(z0 + h)n − anzn0 . We use the algebraic identity xn − yn =

(x− y)(xn−1 + xn−2y + . . .+ xyn−2 + yn−1):

(z0 + h)n − zn0 = h((z0 + h)n−1 + (z0 + h)n−2z0 + . . .+ zn−10 ).

Therefore

EN(z0 + h)− EN(z0)

h
=
∑
n>N

an((z0 + h)n−1 + (z0 + h)n−2z0 + . . .+ zn−10 ).

Notice that for h sufficiently small, |z0 + h| < r as well as |z0| < r. Therefore, if we
stick absolute values on everything in the above expression and apply the triangle
inequality, we obtain ∣∣∣∣EN(z0 + h)− EN(z0)

h

∣∣∣∣ ≤∑
n>N

|an|nrn−1.

However, notice that the series on the right converges, and furthermore, its value
approaches 0 as N → ∞. Indeed, notice that

∑
n>N |an|nrn−1 is just the end of

the series g(r) with absolute values on all of its individual terms, and we know that
g(z) converges absolutely for |z| < R. So the series in question does converge, and
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since it is the end of a convergent series, it must approach 0 as N →∞. Therefore,
given some ε/3 > 0, we can find an N2 such that for all small h and N > N2,

|EN (z0+h)−EN (z0)
h

| < ε/3.
Now select any N > max(N1, N2). Then select δ > 0 such that the first term∣∣∣SN (z0+h)−SN (z0)

h
− S ′N(z0)

∣∣∣ < ε/3 for |h| < δ. Then an application of the triangle

inequality shows that∣∣∣∣(SN(z0 + h)− SN(z0)

h
− S ′N(z0)

)
+ (S ′N(z0)− g(z0)) +

EN(z0 + h)− EN(z0)

h

∣∣∣∣ < ε

for |h| < δ, as desired. �

We can apply the above theorem k times to obtain the following corollary:

Corollary 1. A power series is infinitely (complex) differentiable in its disc of conver-
gence, and each of its kth derivatives can be obtained by differentiating term-by-term
k times. The resulting power series has radius of convergence equal to the original
power series.

The next corollary shows how the values of these derivatives at 0 are related to the
coefficients of the power series.

Corollary 2. Let f(z) =
∑
anz

n be a power series with radius of convergence R > 0.

Then ak = f (k)(0)
k!

.

Proof. By the previous corollary we know that f is infinitely differentiable at 0.
Furthermore, we know that

f (k)(z) =
∑
n≥k

ann(n− 1)(n− 2) . . . (n− k + 1)zn−k,

by term-by-term differentiating k times. Plugging in z = 0 gives

f (k)(0) = akk(k − 1) . . . 2 · 1 = akk!,

since all terms with zn−k where n > k vanish at z = 0. Therefore ak = f (k)(0)
k!

, as
desired. �

3. Analytic functions

Let f(z) be a complex function. If there exists a power series
∑
an(z − z0)n with

radius of convergence R > 0 which equals f(z) for all z in an open disc centered at
z0, then we say that f(z) is analytic at z0: in other words, near z0, f is equal to a
power series centered at z0 which converges in a non-trivial region.

Being analytic is a strong property: if f is analytic at z, then we know f can be
locally expressed using a power series near z, which means all the properties of power
series will transfer to f near z. Right now, we have very few tools to prove whether
a function is analytic or not, but we will soon see that virtually all holomorphic
functions are also analytic (a truly remarkable fact! One of the exercises from the
book gives an example of a C∞ real function which is not analytic.) In real calculus,
one proves that a Taylor series for a function converges to its function using the
Taylor remainder formula.
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A basic fact which is useful (see Exercise 18 in the text) says that if f(z) is a power
series with disc of convergence D, then f is analytic at every point of D.

Examples.

• ez is analytic at z = 0. Indeed, because we define ez to equal a power series
which converges for all C, ez is definitely equal to a power series in a neigh-
borhood of 0. Furthermore, since the power series defining ez converges for
all z ∈ C, ez is actually analytic on all of C. (Notice that the power series
expansion for ez centered at a point z0 6= 0 will not be 1 + z + z2/2! + . . .,
which is a power series expansion centered around z = 0.)
• Any polynomial is analytic on all of C. Indeed, a polynomial is its own power

series centered at z = 0, which converges for all z ∈ C (since there are only
finitely many terms).
• If f, g are both analytic at z, then f + g, fg, f/g are all analytic at z (f/g

only if g(z) 6= 0). Compositions of analytic functions are also analytic.

4. A digression: defining ez and proving its properties

As an illustration of some of the ideas in this section, we prove some of the basic
properties of ez. We will define ez to be the value of the power series 1 + z + z2/2! +
z3/3! + . . ., which we know converges for all z ∈ C.

The first basic property we want to prove is that (ez)′ = ez. Indeed, if we take the
power series expression for ez and then differentiate it term-by-term, we find

(ez)′ = 1 +
2 · z
2!

+
3 · z2

3!
+ . . . = 1 + z +

z2

2!
+
z3

3!
+ . . . = ez.

Also, we want to show that e0 = 1, but this is obvious by plugging in z = 0 into
the power series expression for ez.

A little more tricky to show is the property that ez+w = ezew for all complex
z, w. We begin by showing that if f(z) =

∑
anz

n is a power series which satisfies
f ′(z) = f(z), then f is a constant multiple of ez. Indeed, term-by-term differentiation
of f(z) yields

f ′(z) = a1 + 2a2z + 3a3z
2 + . . . = f(z) = a0 + a1z + a2z

2 + . . . .

From an exercise which you will solve on this week’s homework, the only way two
power series about the same center are equal in an open set containing their common
center is if the corresponding coefficients of each zn term are the same. Therefore, we
see that a0 = a1, a1 = 2a2, a2 = 3a3, . . .. In particular, one can show that an = a0/n!,
which means that f(z) = a0e

z, as desired.
Consider ez+w as a function of z, where we think of w as a fixed complex number.

Then d
dz
ez+w = ez+w by the chain rule and the fact that we know (ez)′ = ez. Notice

that ez+w is analytic on all of C, since ez is. Therefore, ez+w converges to its power
series expansion about z = 0, and we have proven that a power series satisfies the
differential equation f ′(z) = f(z) if and only if f(z) = cez for some constant c. This
means that ez+w = cez for some complex number c. Plug in z = 0 to see that ew = c,
so that ez+w = ewez, as desired.
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We can then define cos z, sin z either by using their respective power series, or by
declaring

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2
.
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