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1. Limit definition of a derivative

Since we want to do calculus on functions of a complex variable, we will begin
by defining a derivative by mimicking the definition for real functions. Namely, if
f : Ω → C is a complex function and z ∈ Ω an interior point of f , we define the
derivative of f at z to be the limit

lim
h→0

f(z + h)− f(z)

h
if this limit exists. If the derivative of f exists at z, we denote its value by f ′(z), and
we say f isholomorphic at z. If f is holomorphic at every point of an open set U we
say that f is holomorphic on U .

This definition naturally leads to several basic remarks. First, the definition for-
mally looks identical to the limit definition of a derivative of a function of a real
variable, which is inspired by trying to approximate a tangent line using secant lines.
However, in the limit as h→ 0, we are allowing h to vary over all complex numbers
that approach 0, not just real numbers. One of the main principles of this class is that
this seemingly minor difference actually makes a gigantic difference in the behavior
of holomorphic functions.

We insist that z be an interior point of Ω to ensure that as we let h → 0, we can
approach h in any direction. This is similar to the fact that derivatives (at least,
derivatives which are not one-sided) of real functions are only defined at interior
points of intervals, not at the endpoints of closed intervals.

Why is the term holomorphic used instead of differentiable? We could use differen-
tiable, or perhaps the more specific term complex differentiable, but the convention
in mathematics is that the term holomorphic refers to differentiability of complex
functions, not real functions. In particular, we will see that a complex function being
holomorphic is substantially more restrictive than the corresponding real function it
induces being differentiable.

Perhaps you might be wondering what exactly a limit of a complex function is.
After all, when we say that h → 0 as h ranges over complex numbers, what exactly
do we mean? The rigorous definition is just the natural extension of the ε−δ definition
used for real functions. More precisely, we say that lim

z→z0
f(z) = w if for all ε > 0
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2 DIFFERENTIABILITY OF COMPLEX FUNCTIONS

there exists δ > 0 such that if 0 < |z−z0| < δ, then |f(z)−w| < ε. In other words, if
we specify any error ε, no matter how small it is, all values of f(z) for z sufficiently
close to z0 will be within that error of w.

The fact that the formal definition of derivatives of complex functions is so similar
to real functions turns out to be handy for proving many of the basic properties of
the complex derivative. In particular, many of the proofs of these properties in the
real case transfer over, in almost identical fashion, to the complex case. For example,
one can show the following:

Suppose f, g : Ω→ C are differentiable at z. Then

• f + g is differentiable at z, and (f + g)′(z) = f ′(z) + g′(z),
• if c is any complex number, then cf is differentiable at z, and (cf)′(z) = cf ′(z),
• (fg) is differentiable at z, and (fg)′(z) = f ′(z)g(z)+f(z)g′(z) (product rule),
• if f is differentiable at z and g is differentiable at f(z), then (g ◦ f) is differ-

entiable at z, and (g ◦ f)′(z) = g′(f(z))f ′(z). (chain rule)

So, the good news is that all of the standard differentiation rules carry over to
the complex case with no formal change. Let’s use these properties and the limit
definition of a derivative to calculate some derivatives.

Examples.

• Let f(z) = z. Then

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

z + h− z
h

= 1.

Therefore f(z) = z is differentiable on all of C and has derivative f ′(z) = 1.
This is exactly identical to the real case.
• More generally, suppose n is a positive integer. We claim that if f(z) = zn,

then f ′(z) = nzn−1. We can prove this either using the binomial theorem to
expand (z + h)n, or by induction. Let’s do the latter.

Recall that to prove a statement parameterized by positive integers using
induction, we prove the base case (usually n = 1), and then prove that if
the statement is true for n it is also true for n + 1. We already proved the
n = 1 case in the prior example. Suppose we know that if f(z) = zn, then
f ′(z) = nzn−1. Using the product rule (which we assume has been proven for
us), if f(z) = zn+1, then f ′(z) = (zn)′z + zn(z)′ = nzn−1 · z + zn = (n+ 1)zn,
as desired. Furthermore, f(z) = zn is differentiable on all of C.
• From the above calculations and the basic properties we mentioned earlier,

differentiating a polynomial with complex coefficients is formally identical to
differentiation of real polynomials. For example, if f(z) = iz4+(2−3i)z3+7z,
then f ′(z) = 4iz3 + (6− 9i)z2 + 7.
• Similarly, one can show that if n is a negative integer, then f(z) = zn has

derivative f ′(z) = nzn−1, although of course this time f(z) is differentiable
on C− 0, since zn is undefined at z = 0 if n < 0.
• Even though we have proven the ‘power rule’ for integer exponents on z, notice

that we have not said anything about whether this rule is true for non-integer
exponents. As a matter of fact, notice that we do not yet have any good
definition of what non-integer exponents mean!
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• We will postpone the calculation of derivatives of ez and related functions
until we study power series.

2. Holomorphic functions, the Cauchy-Riemann equations

Let f : Ω→ C be any complex function. Since we can identify C with R2, any such
function automatically induces a related function f : Ω→ R2, where now we think of
Ω as being a subset of R2 instead of C. If f is holomorphic, does this imply anything
about real differentiability of its associated real function? As a matter of fact, yes,
it does, and it turns out that this connection is not merely a curiosity; many deep
theorems about certain real functions can be proven by appealing to this connection!

Examples.

• Suppose f(z) = z. Then we may write f(x + yi) = x + yi, so f induces the
function f : R2 → R2 where f(x, y) = (x, y).
• Suppose f(z) = z2. Then we may write f(x+yi) = (x+yi)2 = (x2−y2)+2xy·i,

so f induces the function f : R2 → R2 where f(x, y) = (x2 − y2, 2xy).
• Suppose f(z) = ez. Assuming basic properties of complex exponentials (which

we will prove soon), ex+yi = ex · eyi = ex(cos y + i sin y). Therefore f(z) = ez

induces the function f(x, y) = (ex cos y, ex sin y).

• Suppose f(z) = 1/z. Then we may write f(x + yi) =
1

x+ yi
=

x

x2 + y2
−

y

x2 + y2
i, so f induces f(x, y) =

(
x

x2 + y2
,− y

x2 + y2

)
, and this real function

is defined on R2 − (0, 0).

• Suppose f(z) = |z|. Then we may write f(x + yi) =
√
x2 + y2, so f induces

f(x, y) = (
√
x2 + y2, 0).

• Suppose f(z) = Im z. Then we may write f(x + yi) = y, so f induces
f(x, y) = (y, 0).

In general, if f(x + yi) = u(x, y) + v(x, y)i, where u, v are functions from some
subset of R2 to R, then f induces a real function from some subset of R2 to R2 given
by f(x, y) = (u(x, y), v(x, y)).

Suppose f is holomorphic at z, and write f(x + yi) = u(x, y) + v(x, y)i. Then we
can compute the derivative of f at z using the limit definition by either letting h
approach 0 along the real axis or along the imaginary axis. If we approach along the
real axis,

f ′(z) = lim
h→0

f(z + h)− f(z)

h
= lim

h→0

f(x+ h+ yi)− f(x+ yi)

h

= lim
h→0

u(x+ h, y) + v(x+ h, y)i− (u(x, y) + v(x, y)i)

h
.

Separating the last expression into real and imaginary parts,

f ′(z) = lim
h→0

u(x+ h, y)− u(x, y)

h
+
v(x+ h, y)− v(x, y)

h
i.

These two expressions appear in multivariable calculus: they are the partial deriva-
tives of u(x, y), v(x, y) with respect to x. So we have shown that if f is holomorphic
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at z, then ux, vx exist at (x, y), and we have an equation which relates f ′(z) to ux, vx:
namely,

f ′(z) = ux(x, y) + vx(x, y)i.

If we repeat the same procedure except this time we let h → 0 along the imaginary
axis, then letting h′ → 0 along reals, we get

f ′(z) = lim
h′→0

f(z + ih′)− f(z)

ih′
=

1

i
lim
h′→0

f(x+ (y + h′)i)− f(x+ yi)

h

=
1

i
lim
h′→0

u(x, y + h′) + v(x, y + h′)i− (u(x, y) + v(x, y)i)

h′

=
1

i
lim
h′→0

u(x, y + h′)− u(x, y)

h′
+
v(x, y + h′)− v(x, y)

h′
i

= vy(x, y)− uy(x, y)i.

Therefore we have two alternate expressions for f ′(z), and since they must be equal,
and ux, uy, vx, vy are all real numbers, we have proven the following theorem:

Theorem 1. Suppose f(x + yi) = u(x, y) + v(x, y)i is holomorphic at z = x + iy.
Then the partial derivatives ux, uy, vx, vy all exist at (x, y), and at (x, y) they satisfy
the pair of partial differential equations

ux = vy, uy = −vx.
More generally, if f is holomorphic on an open set Ω, then ux, uy, vx, vy exist on Ω,
and ux = vy, uy = −vx holds true on all of Ω. We call this pair of partial differential
equations the Cauchy-Riemann equations.

At this point, we know that any holomorphic function must have real and imaginary
parts which satisfy the Cauchy-Riemann equations. One use of this fact/theorem is
that it lets us show that certain functions are not holomorphic:

Examples.

• Consider the complex conjugation function f(z) = z. Then it induces the
functions u(x, y) = x, v(x, y) = −y. Computing partial derivatives, we find
that ux = 1, vy = −1, uy = 0, vx = 0, so the CR equation ux = vy is never
satisfied for any z. Therefore f(z) is not holomorphic at any point of C. Notice
that this might seem somewhat surprising, since the real and imaginary parts
of f(z) = z look so simple and well-behaved. Indeed, the CR equations are
highly nontrivial and will only be satisfied for very special pairs of u, v.
• Let f(z) = Im z. Then f induces the functions u(x, y) = y, v(x, y) = 0.

Since uy = 1, vx = 0, the CR equations are never satisfied, since uy = −vx is
impossible at any point z. Therefore f(z) = Im z is never holomorphic at any
point of z.

These examples illustrate that even if you construct a complex function f(x+yi) =
u(x, y)+v(x, y)i using ‘well-behaved’ u(x, y), v(x, y), f may still not be holomorphic.
As a matter of fact, notice that even in perhaps the best possible situation, where
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u, v are polynomials, as in the above examples, f does not have to be holomorphic.
That the CR equations are so special turn out (in the end) to be the source of all the
strong properties that holomorphic functions satisfy.

A natural question is whether the converse of the above theorem holds: namely, if
u(x, y), v(x, y) satisfy the CR equations, if f(z) = u(x, y) + v(x, y)i is holomorphic.
It turns out that under certain fairly weak conditions, the converse is indeed true,
so that the CR equations essentially completely determine whether a function f is
holomorphic. However, before giving the statement and proof we need to review a
few concepts from the calculus of real functions.

3. Differentiability of real functions

We spend a lot of time in single-variable calculus computing derivatives, and think-
ing about the geometric significance of derivatives. In multivariable calculus, we dis-
cuss attempts to generalize derivatives, like partial derivatives and directional deriva-
tives. However, many introductory multivariable calculus classes do not discuss what
the derivative of a function f : Rm → Rn is, or if they do, they do not discuss it in
depth. We want to quickly review what the derivative of such a function is.

We begin by interpreting derivatives of single variable functions in a slightly dif-
ferent way than what a calculus student is accustomed to. Suppose f : R → R is
differentiable at x. Then

lim
h→0

f(x+ h)− f(x)

h
= f ′(x).

Another way of saying this is that

lim
h→0

f(x+ h)− f(x)− hf ′(x)

h
= 0.

In other words, if we define a new function r(h) such that f(x+h)− f(x)−hf ′(x) =
hr(h), then limh→0 r(h) = 0. So we can redefine what it means for f(x) to be
differentiable at x as follows: f is differentiable at x if and only if there exists a real
number f ′(x) such that we can write

f(x+ h) = f(x) + hf ′(x) + hr(h),

where r(h)→ 0 as h→ 0. Sometimes, instead of hr(h), we will use |h|r(h); evidently
this does not change whether a function is differentiable or not.

Examples.

• Consider f(x) = x2. We know that f ′(x) = 2x; let us see how this new
interpretation of a derivative works in this example. Let x = 3. Then f ′(3) =
6, and if we write

f(3 + h) = f(3) + hf ′(3) + hr(h),

we can solve for r(h): f(3+h) = (3+h)2 = h2+6h+9, and f(3) = 9, f ′(3) = 6,
so h2 + 6h + 9 = 9 + 6h + hr(h), so r(h) = h. Notice that r(h) = h → 0 as
h→ 0, as expected.
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• Consider f(x) = sin x, and let x = 0. Then f(0) = 0, f ′(0) = 1. We can write

f(0 + h) = f(0) + hf ′(0) + hr(h),

which becomes sinh = 0 + h+ hr(h). Therefore r(h) = sinh
h
− 1. Notice that

limh→0 r(h) = 0, as expected.

Geometrically, one should think of this new interpretation of derivative as saying
that a function f is differentiable at x if and only if there is a good linear approx-
imation to f at x, in the sense that this linear approximation has error which is of
lower order than the linear approximation itself.

How does this help with defining a derivative for functions of several real variables?
Notice that we cannot imitate the limit definition in a naive way, since we cannot
divide by ordered tuples of real numbers. So instead we mimic this description of a
derivative, replacing the constant f ′(x) by a linear function of several real variables,
which is known as a linear transformation in linear algebra.

A linear transformation is a function T : Rm → Rn which has the form

T (x1, x2, . . . , xm) = (a11x1 + a12x2 + . . .+ a1mxm, a21x1 + . . .+ a2mxm, . . .),

where the aij are real numbers. We typically represent T using an n × m matrix
with aij as its entries. For example, the function T (x, y) = (2x + 4y,−x + 3.5y, 7x)
is represented by the matrix  2 4

−1 3.5
7 0

 .
Let f : Rm → Rn be any real function. (More generally, f only needs to be defined

on a subset of Rm). Then we say that f is differentiable at a point x = (x1, . . . , xm)
if there exists a linear transformation Tx = T : Rm → Rn such that if we write

f(x + h) = f(x) + T (h) + |h|r(h),

then limh→0 r(h) = 0, where this limit takes place in Rm. We call the linear trans-
formation Tx = T the derivative (sometimes total derivative) of f at x.

This definition is difficult to work with directly. Fortunately, in most situations
it is fairly easy to compute, because it turns out that real differentiability is closely
related to the existence of partial derivatives. In particular, we have the following
theorem, which we will not prove, from real analysis:

Theorem 2. Let f : Rm → Rn be any function. Write f = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm).
Let x = (x1, . . . , xm) be a point of Rm. If the partial derivatives ∂jfi exist for all i, j in
some open ball containing x and are also all continuous at x, then f is differentiable
at x.

Furthermore, if f is differentiable at x, then all the partial derivatives ∂jfi exist,
and the derivative of f at x is given by the Jacobian matrix

J(x1, . . . , xm) = (∂jfi(x1, . . . , xm))ij.
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The Jacobian matrix is just the matrix you get by computing the gradient of each
of the component functions of f and then evaluating them at the point (x1, . . . , xm),
and taking these gradients as the rows of the Jacobian matrix.

The hypothesis that the partial derivatives must exist in a neighborhood of x is
essential. It is not enough to know that the partial derivatives exist at x; there
are examples of functions which have partial derivatives at a point x but are not
differentiable there.

The property of a function having continuous partial derivatives appears so fre-
quently that we give it a name. If Ω is an open set in Rn, we say that a function
f : Rm → R is in Ck(Ω) if all the partial derivatives of order k exist and are continu-
ous at every point of Ω. A function f : Rm → Rn is in Ck(Ω) if each of its component
functions are Ck(Ω). A function which is in Ck(Ω) for every k ≥ 1 is in C∞(Ω).

The theorem above says, for example, that any C1 function on an open set Ω is
differentiable on Ω, with derivative given by the Jacobian matrix.

• Let f(x, y) = (x2 + xy,−2xy). Since the component functions are C∞ (being
polynomials), f is real differentiable everywhere, and its derivative is given
by

J(x, y) =

[
2x+ y x
−2y −2x

]
.

• Let f(x, y) = (ex cos y, ex sin y). (This is the real function that f(z) = ez in-
duces.) Then f is real differentiable everywhere, since its component functions
are C∞, and its derivative is given by

J(x, y) =

[
ex cos y −ex sin y
ex sin y ex cos y

]
.

• Suppose f(x, y) = (u(x, y), v(x, y)), and u, v are C1 functions that satisfy
the CR equations on an open set Ω. Then f is differentiable at Ω, and has
derivative given by

J(x, y) =

[
ux uy
vx vy

]
.

However, the CR equations tell us that ux = vy, uy = −vx. In other words, the
CR equations are equivalent to saying that the Jacobian matrix of f(x, y) =
(u(x, y), v(x, y)) is an anti-symmetric matrix. For instance, in the previous
example, the Jacobian matrix is anti-symmetric, so f(z) = ez satisfies the CR
equations.
• Let f(x) be a function of a single variable. Then the Jacobian matrix is

just the 1 × 1 matrix [f ′(x)], so the Jacobian matrix can be thought of as
a generalization of the ordinary notion of derivative for a single-variable real
function.

4. A sufficient condition for holomorphy

With this background on real differentiability in hand, we can now prove a sufficient
condition involving the CR equations for a complex function f to be holomorphic.
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Before beginning, we remark that the description of a differentiable function as a
function which has a good linear approximation (in the sense that f(x+h) = f(x) +
hf ′(x)+ |h|r(h) satisfies r(h)→ 0 as h→ 0) extends to holomorphic functions, where
we now interpret h→ 0 as a limit in complex numbers.

Theorem 3 (Theorem 2.4 of Ch.1 in the text). Suppose f(x+yi) = u(x, y)+v(x, y)i
is a complex function defined on an open set Ω in C. Suppose u, v are C1 on Ω and
satisfy the Cauchy-Riemann equations. Then f is holomorphic on Ω.

Proof. We begin by remarking that if, say, u(x, y) is C1 on Ω, then u is differentiable
on Ω. Therefore, its matrix is given by the Jacobian matrix [ux uy], which is just the
gradient, and the definition of differentiability can be re-expressed by saying that if
we write

u(x+ h1, y + h2) = u(x, y) + ux(x, y)h1 + uy(x, y)h2 + |h|r(h),

then r(h)→ 0 as h = (h1, h2)→ (0, 0). (In other words, the tangent plane to u(x, y)
is a good linear approximation to u near (x, y).)

Applying this to both u, v, we find that we can write

u(x+ h1, y + h2) = u(x, y) + ux(x, y)h1 + uy(x, y)h2 + |h|r1(h)

v(x+ h1, y + h2) = v(x, y) + vx(x, y)h1 + vy(x, y)h2 + |h|r2(h)

where r1(h), r2(h)→ 0 as h→ (0, 0).
Since f(z) = u+ vi, if we let h = h1 + ih2, we can write

f(z + h)− f(z) = u(x+ h1, y + h2)− u(x, y) + i(v(x+ h1, y + h2)− v(x, y)).

Plug in the two expressions above for u(x + h1, y + h2) − u(x, y) and the analogous
expression for v:

f(z+h)−f(z) = ux(x, y)h1+uy(x, y)h2+|h|r1(h)+i(vx(x, y)h1+vy(x, y)h2+|h|r2(h)).

The |h|r1(h) and i|h|r2(h) sum to a term |h|r(h), where r(h) → 0 as h → 0, since
r1(h), r2(h) → 0 as h → 0. For the remaining four terms, apply CR to convert the
vx, vy terms to ux, uy terms:

ux(x, y)h1 + uy(x, y)h2 + i(vx(x, y)h1 + vy(x, y)h2) = uxh1 + uyh2 − iuyh1 + iuxh2.

However, notice we can factor the right hand side as (ux− iuy)(h1 + ih2). Therefore,
we can write

f(z + h)− f(z) = (ux − iuy)h+ |h|r(h),

where r(h) is a complex function satisfying r(h) → 0 as h → 0. Therefore f is
differentiable, with derivative ux− iuy = ux + ivx, which is the expected value of the
derivative. �
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A natural although somewhat subtle question is whether weaker conditions on u, v
(weaker than being C1) are sufficient to prove holomorphy. As a matter of fact, there
are theorems with weaker hypotheses, but they are surprisingly non-trivial to prove.
See this article by Grey and Morris in the American Mathematical Monthly for more
information, if interested.

We conclude by proving a few more basic facts that use the CR equations. First,
we show that if f is holomorphic in a region Ω, then considered as a real function it
is also real differentiable there (as expected).

Theorem 4 (Proposition 2.3 in Chapter 1 of the text). Suppose f is a complex
function holomorphic on a region Ω. Then considered as a real function from Ω to
R2, f is real differentiable, and the determinant of the Jacobian matrix at a point
(x, y) is equal to |f ′(x+ yi)|2.

Proof. To show that f is differentiable as a real function, we want to show that if
(x, y) is a point in Ω, there exists a linear transformation T : R2 → R2 such that

f(x+ h1, y + h2)− f(x, y) = T (h1, h2) + |h|r(h),

where |r(h)| → 0 as h→ (0, 0). Since we know that f is holomorphic, we can write

f(z + h)− f(z) = hf ′(z) + |h|r(h),

where r(h)→ 0 as h→ 0 in complex numbers. Thinking of this equation as relating
real functions, we obtain

f(x+ h1, y + h2)− f(x, y) = (h1 + ih2)(ux + ivx) + |h|r(h).

The first term on the right hand side is equal to (h1ux − h2vx) + i(uxh2 + vxh1).
Therefore T is given by the matrix[

ux −vx
vx ux

]
=

[
ux uy
vx vy

]
.

(We used the CR equations in the above equality.) So f is real differentiable with
Jacobian matrix above, and the determinant of this matrix is u2x + v2x = |ux + ivx|2 =
|f ′(z)|2, as desired. �

The next proposition shows that holomorphic functions are very closely related
to a special type of function called a harmonic function, which appear frequently in
physics and engineering. We begin by defining what a harmonic function is:

Definition 1. The differential operator ∂2

∂x2 + ∂2

∂y2
which operates on functions f :

R2 → R (or more generally, functions f : Ω→ R, where Ω is an open subset of R2)
is called the Laplacian in R2, and is sometimes written as ∆.

Definition 2. Let f : Ω → R be a real-valued function defined on an open set Ω in
R2. If f is C2 and ∆f = 0, then we call f a harmonic function.

Examples.

• Constant functions are harmonic, since their second order partial derivatives
are always equal to 0.

http://www.jstor.org/stable/2321164
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• Any linear function, ie, function of the form f(x, y) = ax + by + c, is also
harmonic.
• f(x, y) = ex cos y is harmonic on R2. Indeed, fxx = ex cos y, while fyy =
−ex cos y, so fxx + fyy = 0 is true everywhere.
• There are actually much more complicated functions which are harmonic, but

we will not discuss them further, since they constitute a large portion of the
study of partial differential equations. However, the next proposition shows
that any holomorphic function produces harmonic functions automatically.

Proposition 1. Suppose f(z) = u+vi is holomorphic on an open set Ω, and suppose
u, v are both C2 (we will soon be able to remove this condition). Then u and v are
both harmonic on Ω.

Proof. Since f is holomorphic, the CR equations tell us that ux = vy, uy = −vx.
Differentiate the first equation with respect to x and the second with respect to y to
get uxx = vyx, uyy = −vxy. Since u, v are C2, vyx = vxy, so uxx + uyy = 0; ie, u is
harmonic on Ω. Something similar works to show that v is also harmonic on Ω. �

The CR equations provide a non-obvious connection between harmonic functions
(which on the surface seem to have nothing to do with complex numbers or holomor-
phic functions), which appear everywhere in physics and engineering, and holomor-
phic functions. As a consequence, several of the non-obvious theorems we prove for
holomorphic functions during this class will have natural counterparts for harmonic
functions. We will point some of these connections out, but one could fill many classes
discussing harmonic functions and their relatives.
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