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1. Topology and limits of complex numbers

Since we will be doing calculus on complex numbers, not only do we need to know
how to do arithmetic on complex numbers, we also need to understand how to take
limits in complex numbers. Fortunately, the situation is very similar to what happens
in R.

For example, suppose z1, z2, . . . , zn, . . . is an infinite sequence of complex numbers.
We say that this sequence converges to the complex number w if lim

n→∞
|zn − w| = 0,

and write lim
n→∞

zn = w if this is the case. Notice that in this definition, the numbers

|zn − w| are all real, so this definition is not circular.
One can easily check that zn → w if and only if Re zn → Rew, Im zn → Imw.

Therefore, evaluating limits of sequences of complex numbers is, in practice, the
same thing as evaluating the limits of two sequences of real numbers. Geometrically,
a sequence of numbers zn in the complex plane approaches a limit w if and only if
the points zn get closer and closer to w.

Example. Suppose zn =
n

n+ 1
+

sinn√
n
i. Then Re zn =

n

n+ 1
has limit 1, and

sinn√
n

has limit 0, so zn → 1.
As a matter of fact, since |z1 − z2| is just equal to the distance of z1, z2 from each

other in the complex plane, taking absolute values of complex numbers gives the
same distance function as ordinary Euclidean distance in R2. If you have heard of
a metric space before, the function d(z1, z2) = |z1 − z2| defines a metric on C. If
you haven’t heard of metrics before, intuitively speaking, a metric provides a way to
measure distance on a set. Metrics must satisfy certain axioms, which we omit here,
and one can prove a variety of fairly general facts about metric spaces. This is often
covered in a topology or real analysis class.

Since the absolute value on C defines a metric on C, we can talk about various
topological notions on C, like open sets, closed sets, compactness, connectedness, etc.
Again, all of these notions are defined in the more general setting of a topological
space, which is covered in a first class on topology, but we do not assume prior
knowledge of that subject here. Instead we will just give the specific definitions and
properties (omitting proofs if they are long) that we need.

Suppose z0 is a fixed complex number and r an integer. Then the open disc or
open ball centered at z0 of radius r is the set of complex numbers
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Dr(z0) = {z ∈ C ||z − z0| < r}.
Geometrically, an open ball centered at z0 is just an open disc centered at z0 in the
complex plane. Notice that the inequality |z − z0| < r is strict; this is in contrast to
a closed ball centered at z0 of radius r, which is the set of complex numbers

Dr(z0) = {z ∈ C ||z − z0| ≤ r}.
This is just a closed disc of radius r in the complex plane centered at z0. Notice
that the closed disc contains all of its boundary points, while the open disc contains
none of its boundary points. We will repeatedly use open and closed discs for the
remainder of this class, so that is why we use shorthand notation for these sets.

Let Ω be a subset of C. Given any z0 ∈ Ω, we call z0 an interior point of Ω if there
exists some r0 > 0 such that Dr0(z0) ⊂ Ω. Intuitively, z0 is an interior point of Ω if it
belongs to Ω but does not lie on its boundary. For example, one quickly checks that
any point on the boundary of a closed disc is not an interior point, because any open
ball centered at such a point will always contain points outside the closed disc.

If Ω is a subset of C such that every point of Ω is an interior point, then we call
Ω an open set. If Ω is a subset of C such that C − Ω (the complement of Ω in C)
is open, then we call Ω an closed set. Intuitively speaking, open sets contain none
of the points on their boundary, while closed sets contain all of the points on their
boundary. Both the empty set ∅ and all of C are considered both open and closed.

Examples.

• Open discs are open sets. Indeed, given any point z0 in an open disc Ω of
radius r, we can find some r0 small such that Dr0(z0) ⊂ Ω. (For example,
choose r0 to be half the difference of the distance of z0 from the center of Ω
and r.)
• Sets like Re z > c, Im z > c where c is a constant real number are open sets.
• Closed discs are closed sets. Indeed, it is obvious that the complement of a

closed disc is open.
• Sets like Re z ≥ c, Im z ≥ c are closed sets.
• Finite collections of single points are closed. Obviously, there are some infinite

collections of single points which are not closed.
• There are many sets which are neither open nor closed. For example, the

open disc of radius 1 centered at 0 together with 1 is neither open nor closed.

There is an alternate characterization of closed sets which is frequently useful. Let
Ω be any subset of C. If zn is a sequence of points in Ω converging to some point
z ∈ C with zn 6= z for all n, then we call z a limit point of Ω. Intuitively, a limit point
of a set is a point which can be approximated arbitrarily closely by other points in
that set. Notice that a limit point of Ω may or may not be a point of Ω itself.

Then one can show that a closed set Ω is a set which contains all of its limit
points (indeed, this is done in introductory topology classes). In other words, any
point which can be approximated arbitrarily closely by elements of a closed set must
belong to the closed set itself. More generally, if Ω is any set, then the union of Ω
with all of its limit points is called the closure of Ω, and is written Ω. Again, many
properties of the closure of a set are proven in an introductory topology class. For



TOPOLOGY, LIMITS OF COMPLEX NUMBERS 3

example, one can show that the closure of any set Ω is closed (hence the name),
and that it is also the smallest closed set containing Ω, in the sense that it is the
intersection of all closed sets containing Ω. The boundary of a set Ω is the closure of
Ω minus its interior, and is often written ∂Ω.

Example. Consider the open disc D = D1(0) of radius 1 centered at the origin. This
set is evidently not closed. Notice that the sequence of points 0, 1/2, 2/3, 3/4, . . . in
D has limit point 1, which is not in D. The closure of D is the closed disc of radius
1 centered at the origin.

Let Ω be any set in C. We say that Ω is bounded if there exists some real number
M such that |z| < M for all z ∈ Ω. In other words, no part of Ω gets infinitely far
from the origin. Alternately, Ω is bounded if we can find a (large) disc which contains
all of Ω. Also, if Ω is bounded, then we define the diameter to be the supremum of
|z1 − z2| as z1, z2 ∈ Ω. In other words, the diameter of Ω is the smallest real number
which upper bounds the distances of any two points in Ω.

Examples.

• A closed disc of radius r has diameter 2r, since any two points in such a disc
are separated by a distance at most 2r, and and the distance of 2r is actually
achieved by points on opposite ends of a diameter of the disc.
• The diameter of a set does not actually have to be achieved as the distance

between two points in that set. For example, an open disc of radius r also
has diameter 2r, but there are no two points in such a disc whose distance is
equal to 2r. Nevertheless, we can find points in the disc whose distances get
arbitrarily close to 2r.

If Ω is both closed and bounded, then we call Ω compact. Compact sets have
many special and useful properties, which are again proven in introductory topology
classes. We list them here without proof.

• Let Uα be a collection of open sets whose union contains a compact set Ω.
Then there exists a finite subcollection of the Uα whose union contains Ω.
(This is often phrased as saying that any open cover of a compact set contains
a finite subcover. This property is usually taken as the definition of a compact
set.)
• If Ω is a compact set in C, then any sequence of points in Ω contains a

subsequence which converges to some point in Ω. (This is Theorem 1.2 of the
text.)
• A property which we will make use of in a few weeks is the following: suppose

we have a nested sequence of non-empty compact sets K1 ⊃ K2 ⊃ K3 . . . with
diam(Kn) → 0 as n → ∞. Then there exists a unique point w contained in
every Kn. For a proof, see the text (Proposition 1.4).

Examples.

• We will show that each of the three properties fails for suitable choices of
non-compact sets. For example, let Ω be the open disc of radius 1 centered
at 0. Then consider the open cover of Ω consisting of the discs D(n−1)/n(0) of
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radius 1 − 1/n centered at 0. Every point of Ω lies in one of these discs, so
this does indeed form an open cover, but there is no finite subcover, because
any finite subcover will contain a disc of largest radius 1− 1/k, say, and then
any point of Ω of distance between 1 − 1/k and 1 will not lie in this finite
subcover. This argument fails for the closed disc of radius 1 since then the
collection of open sets D(n−1)/n(0) does not contain any of the points on the
boundary of Ω.
• It is easy to think of a sequence of points in the open disc Ω above which has

no subsequence converging to a point of Ω. For example, 0, 1/2, 2/3, 3/4, . . .
works, as the only possible limit point of this sequence is 1, which does not
lie in Ω.
• Finally, it is possible to have a nested sequence of open sets with diameter

approaching 0 whose intersection contains no points. For example, let Un =
(0, 1/n)× (0, 1/n). These are nested open sets whose diameter approaches 0,
but there is no point inside each of these sets.

There is one final important topological definition which we will frequently use.
Let Ω be an open set. We call Ω connected if it is not possible to find two disjoint,
non-empty open sets Ω1,Ω2 ⊂ Ω such that Ω = Ω1 ∪ Ω2. Intuitively speaking, a
connected set contains a single ‘piece’ (the proper term is ‘connected component’).
Alternately, we say that an open set Ω in C is path-connected if given any two points
z1, z2 ∈ Ω, we can find a path connecting z1 to z2 contained entirely in Ω. (Formally
speaking, a path is a continuous function γ : [0, 1] → C, and its graph is the path
connecting z1 to z2.) For open sets in C, the properties of being connected and path-
connected are equivalent. As a matter of fact, the property of an open set Ω being
connected is equivalent to the fact that any two points in Ω can be joined by a path
consisting only of horizontal and vertical line segments.

It is possible to define a notion of connectedness for arbitrary sets, but for our
purposes we will only need to know what connected means for closed sets. A closed
set Ω ⊂ C is connected if it is impossible to find two non-empty disjoint closed sets
Ω1,Ω2 ⊂ C such that Ω = Ω1 ∪ Ω2.

Examples.

• Open and closed discs are connected. The half-planes Re z > c, Im z > c are
connected. However, the set consisting of points z such that Re z > 1 or
Re z < 0 is not connected.
• The annulus 1 < |z| < 2 is connected.
• The interiors of polygons are connected.

We will very frequently find ourselves studying functions defined on an open con-
nected non-empty set Ω. For the rest of this class, we will call an open connected set
in C a region of C. Be aware that outside of this class, it is entirely possible that a
region can refer to a set which might not be open (or, more rarely, not connected)!
But for the entirety of this class (and in the textbook), a region will always be an
open connected non-empty set in C.

This concludes the topology which we will need. Even though there is a lot we are
skimming over, an intuitive grasp of the definitions and familiarity with the examples
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listed above (try to think of a few other examples which illustrate these definitions
on your own) should be sufficient for this class.
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