THE ARITHMETIC OF COMPLEX NUMBERS

Contents

1. Basic properties of complex numbers 1
2. An index to properties, facts, etc. 4

Before doing calculus on complex functions, we need to have a good understanding of the basic properties of complex numbers. In particular, we need to know how to perform arithmetic on complex numbers!

1. Basic properties of complex numbers

A complex number is a number of the form $x+y i$, where $x, y \in \mathbb{R}$ and $i^{2}=-1$. Let $z=x+y i$. Then we often call x the real part of z, and sometimes write $\operatorname{Re} z$ for x, and we call y the imaginary part of z, and sometimes write $\operatorname{Im} z$ for y. (Even though y is the imaginary part of z, y is a real number!)

We often sketch complex numbers by representing the number $z=x+i y$ as the point (x, y) in the complex plane, which graphically looks just like \mathbb{R}^{2}. The x-axis is often referred to as the real axis, and the y-axis is referred to as the imaginary axis.

The two basic arithmetic operations on complex numbers are addition and multiplication (and their relatives, subtraction and division). If $z_{1}=x_{1}+y_{1} i, z_{2}=x_{2}+y_{2} i$ are two complex numbers, then their sum is just the complex number $z_{1}+z_{2}=$ $\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) i$ obtained by summing the real parts together and the complex parts together, respectively. To multiply z_{1}, z_{2}, we distribute appropriately and use the fact that $i^{2}=-1$:

$$
\begin{equation*}
z_{1} z_{2}=\left(x_{1}+y_{1} i\right)\left(x_{2}+y_{2} i\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\left(x_{1} y_{2}+x_{2} y_{1}\right) i \tag{1}
\end{equation*}
$$

We can also negate a complex number by negating its real and imaginary parts, respectively; namely, $-z=-x+(-y) i$. We can then define $z_{1}-z_{2}$ as $z_{1}+\left(-z_{2}\right)$. Obviously $z+(-z)=0$, where 0 is thought of as $0+0 i$. Taking the reciprocal of a complex number is slightly more complicated. One can check that if $z=x+y i$ and $z \neq 0$, then

$$
\begin{equation*}
\frac{1}{z}=\frac{1}{x+y i}=\frac{x-y i}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}-\frac{y}{x^{2}+y^{2}} i . \tag{2}
\end{equation*}
$$

Indeed, in the above calculation we eliminate i from the denominator by multiplying $x+y i$ by $x-y i$, which gives $x^{2}+y^{2}$. One easily checks that $z \cdot \frac{1}{z}=1$.

As a matter of fact, the number $x^{2}+y^{2}$ is quite special; we call $|z|=\sqrt{x^{2}+y^{2}}$ the absolute value or modulus of z. Just as how $|x|$ can be thought of as a measure of the size of x when x is a real number, we can think of $|z|$ as a measure of the size
of z. More generally, if z_{1}, z_{2} are complex numbers, then $\left|z_{1}-z_{2}\right|$ can be thought of as the distance from z_{1} to z_{2}.

How are each of these operations reflected geometrically in the complex plane? Addition of complex numbers $x_{1}+y_{1} i, x_{2}+y_{2} i$ is evidently the same as vector addition of the two vectors $\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle$. Similarly, the negative of z is graphically represented by reflecting z through the origin. The absolute value of z is clearly the distance of the point representing z from the origin.

To get a good intuitive description of multiplication requires that we use an alternate description of complex numbers. One of the most remarkable facts about complex numbers is the identity $e^{i t}=\cos t+i \sin t$, where $t \in \mathbb{R}$. We can basically see why this is true by thinking about the power series representations of $e^{t}, \cos t, \sin t$:

$$
\begin{aligned}
e^{t} & =1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\ldots \\
\cos t & =1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\ldots \\
\sin t & =t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\ldots
\end{aligned}
$$

Replacing t with it in e^{t}, using the fact that $i^{2}=-1$, and then collecting the real and imaginary parts, respectively, give the identity $e^{i t}=\cos t+i \sin t$. It is worth pointing out that this is not entirely rigorous, because we have not yet proven that power series make sense when we allow the variable to be a complex instead of real. We will make this rigorous over the next few classes.

Since $\cos ^{2} t+\sin ^{2} t=1$, we see that $\left|e^{i t}\right|=1$ for all $t \in \mathbb{R}$. That is, the numbers $e^{i t}$ are represented exactly by the points on the unit circle in the complex plane. So given any $z \neq 0$, the number $z /|z|$ is a number of absolute value 1 , hence lies on the unit circle, so we can write $z /|z|=e^{i \theta}$ for some $\theta \in \mathbb{R}$. Therefore any nonzero z can be represented as $z=|z| e^{i \theta}=r e^{i \theta}$, where we let $r=|z|$. Notice that r is uniquely determined by z, and θ is uniquely determined up to an integer multiple of 2π. We call a representation of a complex number $z=x+y i$ in the form $r e^{i \theta}$ the polar representation of z. Indeed, one can just think of (r, θ) as the polar coordinates of the point (x, y). The number θ is often called the argument of z (we are abusing grammar here since strictly speaking the argument is only determined up to an integer multiple of 2π), and we sometimes write $\arg z$ for the argument of z.

Notice that if $z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}}$, then $z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}$. Given a positive real number c, it is clear that multiplying z by c corresponds to scaling the point z by a factor of c. Similarly, given a complex number $e^{i t}$ of unit modulus, multiplying $z=r e^{i \theta}$ by $e^{i t}$ gives $r e^{i(\theta+t)}$, hence corresponds to a rotation of z about the origin through t radians, in a counterclockwise direction. Therefore, we can geometrically think of multiplication of numbers by multiplying the absolute values together, and then adding the arguments together. Multiplying the absolute values corresponds to a scaling, while adding the arguments corresponds to a rotation.

Examples.

- If $z=1$, then the polar representation of 1 is $1=1 e^{i \cdot 0}$. Similarly, if $z=i$, then $i=1 e^{i \cdot \pi / 2}$.
- If $z=2+2 i$, then $2+2 i=2 \sqrt{2} e^{i \pi / 4}$.
- Let's solve for z in the equation $e^{z}=1$. Obviously $z=0$ is a solution, but it is not the only complex solution. If we write $z=x+y i$, then $e^{z}=e^{x} e^{i y}=$ $e^{x}(\cos y+i \sin y)$. For this to equal 1 , we need $e^{x}=1$, and we also need $e^{i y}=1$. Clearly $e^{x}=1$ only has solution $x=0$. On the other hand, $e^{i y}=1$ has infinitely many solutions; namely, all $y=2 \pi i n$, where $n \in \mathbb{Z}$. Therefore the solutions of $e^{z}=1$ are $z=2 \pi i n$, where $n \in \mathbb{Z}$.
- Any complex number ζ_{n} which satisfies $z^{n}=1$ is called a complex nth root of unity. If $\zeta_{n}=r e^{i \theta}$, then we must have $r^{n} e^{i \theta n}=1$. However, this is only possible if $r=1$ (we can conclude $r=1$ from $r^{n}=1$ since we know that $r>0$ is a positive real number) and if θn is an integer multiple of 2π. Therefore, the nth roots of unity are the numbers

$$
\begin{equation*}
1=e^{2 \pi i \cdot 0 / n}, e^{2 \pi i / n}, e^{2 \pi i \cdot 2 / n}, \ldots, e^{2 \pi i \cdot(n-1) / n} ; \tag{3}
\end{equation*}
$$

that is, numbers of the form $e^{2 \pi i k / n}$, where k is any positive integer. There are n such numbers, and if we plot them in the complex plane, we see that they are the vertices of a regular n-gon inscribed in the unit circle.

- A clever application of the identity $e^{i t}=\cos t+i \sin t$ is in helping to memorize trigonometric identities; in particular, identities for $\cos n t$, $\sin n t$, where n is a positive integer. For example, suppose we want to remember the double-angle identities for $\cos 2 t, \sin 2 t$. Then

$$
\left(e^{i t}\right)^{2}=e^{2 i t}=\cos 2 t+i \sin 2 t
$$

but $\left(e^{i t}\right)^{2}$ is also equal to

$$
(\cos t+i \sin t)^{2}=\left(\cos ^{2} t-\sin ^{2} t\right)+i(2 \sin t \cos t)
$$

Since these two complex numbers are equal, the real and imaginary parts of these two numbers must be equal, so $\cos 2 t=\cos ^{2} t-\sin ^{2} t$, $\sin 2 t=2 \sin t \cos t$. The idea is the same for $\cos n t, \sin n t$, though to be obtain identities for these functions, we will need to expand $(\operatorname{cost}+i \sin t)^{n}$, which in general requires the binomial theorem.
Suppose $z=x+y i$ is a complex number. Then the complex conjugate of z is the number $\bar{z}=x-y i$. Geometrically, complex conjugation corresponds to reflection across the x-axis. If $z=r e^{i \theta}$, then $\bar{z}=r e^{i(-\theta)}$. Notice that $z \bar{z}=(x+y i)(x-y i)=$ $x^{2}+y^{2}=|z|^{2}$. Notice that if z is real, then $\bar{z}=z$. A very useful property of complex conjugation is that it commutes with addition and multiplication: that is,

$$
\begin{equation*}
\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}, \overline{z_{1} z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}} . \tag{4}
\end{equation*}
$$

One application of this property is showing that the complex roots of any real polynomial always come in complex conjugate pairs.

Example. If $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ is a real polynomial (that is, all the a_{i} are real), and if z is a root of $f(x)$, then \bar{z} is also a root of $f(x)$. Indeed, if $f(z)=0$, then

$$
a_{0}+a_{1} z+\ldots+a_{n} z^{n}=0 .
$$

If we apply complex conjugation to both sides and apply the fact that conjugation commutes with addition and multiplication repeatedly, together with the fact that all the a_{i} are real, we get

$$
\overline{a_{0}}+\overline{a_{1}} \cdot \bar{z}+\overline{a_{2}} \cdot \bar{z}^{2}+\ldots+\overline{a_{n}} \cdot \bar{z}^{n}=0
$$

Since $\overline{a_{i}}=a_{i}$, this shows that \bar{z} is also a root of $f(x)$, as desired.
Finally, we mention a frequently useful inequality called the triangle inequality, which states that if z_{1}, z_{2} are any complex numbers, then

$$
\begin{equation*}
\left|z_{1}\right|+\left|z_{2}\right| \geq\left|z_{1}+z_{2}\right|, \tag{5}
\end{equation*}
$$

with equality if and only if z_{1}, z_{2} are non-negative real multiples of each other. This is a consequence of the usual triangle inequality, since we can interpret $0, z_{1}, z_{1}+z_{2}$ as the vertices of a triangle with side lengths $\left|z_{1}\right|,\left|z_{2}\right|,\left|z_{1}+z_{2}\right|$.

2. An index to properties, facts, etc.

- Multiplying complex numbers (Equation 1)
- Reciprocal of a (nonzero) complex number (Equation 2)
- Roots of unity (Equation 3)
- Properties of complex conjugation (Equation 4)
- Triangle inequality (Equation 5)

