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Before doing calculus on complex functions, we need to have a good understanding
of the basic properties of complex numbers. In particular, we need to know how to
perform arithmetic on complex numbers!

1. Basic properties of complex numbers

A complex number is a number of the form x + yi, where x, y ∈ R and i2 = −1.
Let z = x + yi. Then we often call x the real part of z, and sometimes write Re z
for x, and we call y the imaginary part of z, and sometimes write Im z for y. (Even
though y is the imaginary part of z, y is a real number!)

We often sketch complex numbers by representing the number z = x + iy as the
point (x, y) in the complex plane, which graphically looks just like R2. The x-axis is
often referred to as the real axis, and the y-axis is referred to as the imaginary axis.

The two basic arithmetic operations on complex numbers are addition and multi-
plication (and their relatives, subtraction and division). If z1 = x1 +y1i, z2 = x2 +y2i
are two complex numbers, then their sum is just the complex number z1 + z2 =
(x1 + x2) + (y1 + y2)i obtained by summing the real parts together and the complex
parts together, respectively. To multiply z1, z2, we distribute appropriately and use
the fact that i2 = −1:

(1) z1z2 = (x1 + y1i)(x2 + y2i) = (x1x2 − y1y2) + (x1y2 + x2y1)i.

We can also negate a complex number by negating its real and imaginary parts,
respectively; namely, −z = −x + (−y)i. We can then define z1 − z2 as z1 + (−z2).
Obviously z + (−z) = 0, where 0 is thought of as 0 + 0i. Taking the reciprocal of a
complex number is slightly more complicated. One can check that if z = x+ yi and
z 6= 0, then

(2)
1

z
=

1

x+ yi
=

x− yi
x2 + y2

=
x

x2 + y2
− y

x2 + y2
i.

Indeed, in the above calculation we eliminate i from the denominator by multiplying
x+ yi by x− yi, which gives x2 + y2. One easily checks that z · 1

z
= 1.

As a matter of fact, the number x2 + y2 is quite special; we call |z| =
√
x2 + y2

the absolute value or modulus of z. Just as how |x| can be thought of as a measure
of the size of x when x is a real number, we can think of |z| as a measure of the size
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of z. More generally, if z1, z2 are complex numbers, then |z1 − z2| can be thought of
as the distance from z1 to z2.

How are each of these operations reflected geometrically in the complex plane?
Addition of complex numbers x1 + y1i, x2 + y2i is evidently the same as vector ad-
dition of the two vectors 〈x1, y1〉, 〈x2, y2〉. Similarly, the negative of z is graphically
represented by reflecting z through the origin. The absolute value of z is clearly the
distance of the point representing z from the origin.

To get a good intuitive description of multiplication requires that we use an al-
ternate description of complex numbers. One of the most remarkable facts about
complex numbers is the identity eit = cos t + i sin t, where t ∈ R. We can basically
see why this is true by thinking about the power series representations of et, cos t, sin t:

et = 1 + t+
t2

2!
+
t3

3!
+ . . . ,

cos t = 1− t2

2!
+
t4

4!
− . . . ,

sin t = t− t3

3!
+
t5

5!
− . . . .

Replacing t with it in et, using the fact that i2 = −1, and then collecting the real
and imaginary parts, respectively, give the identity eit = cos t + i sin t. It is worth
pointing out that this is not entirely rigorous, because we have not yet proven that
power series make sense when we allow the variable to be a complex instead of real.
We will make this rigorous over the next few classes.

Since cos2 t + sin2 t = 1, we see that |eit| = 1 for all t ∈ R. That is, the numbers
eit are represented exactly by the points on the unit circle in the complex plane. So
given any z 6= 0, the number z/|z| is a number of absolute value 1, hence lies on
the unit circle, so we can write z/|z| = eiθ for some θ ∈ R. Therefore any nonzero
z can be represented as z = |z|eiθ = reiθ, where we let r = |z|. Notice that r is
uniquely determined by z, and θ is uniquely determined up to an integer multiple of
2π. We call a representation of a complex number z = x+yi in the form reiθ the polar
representation of z. Indeed, one can just think of (r, θ) as the polar coordinates of the
point (x, y). The number θ is often called the argument of z (we are abusing grammar
here since strictly speaking the argument is only determined up to an integer multiple
of 2π), and we sometimes write arg z for the argument of z.

Notice that if z1 = r1e
iθ1 , z2 = r2e

iθ2 , then z1z2 = r1r2e
i(θ1+θ2). Given a positive

real number c, it is clear that multiplying z by c corresponds to scaling the point z
by a factor of c. Similarly, given a complex number eit of unit modulus, multiplying
z = reiθ by eit gives rei(θ+t), hence corresponds to a rotation of z about the origin
through t radians, in a counterclockwise direction. Therefore, we can geometrically
think of multiplication of numbers by multiplying the absolute values together, and
then adding the arguments together. Multiplying the absolute values corresponds to
a scaling, while adding the arguments corresponds to a rotation.

Examples.
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• If z = 1, then the polar representation of 1 is 1 = 1ei·0. Similarly, if z = i,
then i = 1ei·π/2.
• If z = 2 + 2i, then 2 + 2i = 2

√
2eiπ/4.

• Let’s solve for z in the equation ez = 1. Obviously z = 0 is a solution, but it
is not the only complex solution. If we write z = x + yi, then ez = exeiy =
ex(cosy + i sin y). For this to equal 1, we need ex = 1, and we also need
eiy = 1. Clearly ex = 1 only has solution x = 0. On the other hand, eiy = 1
has infinitely many solutions; namely, all y = 2πin, where n ∈ Z. Therefore
the solutions of ez = 1 are z = 2πin, where n ∈ Z.
• Any complex number ζn which satisfies zn = 1 is called a complex nth root
of unity . If ζn = reiθ, then we must have rneiθn = 1. However, this is only
possible if r = 1 (we can conclude r = 1 from rn = 1 since we know that r > 0
is a positive real number) and if θn is an integer multiple of 2π. Therefore,
the nth roots of unity are the numbers

(3) 1 = e2πi·0/n, e2πi/n, e2πi·2/n, . . . , e2πi·(n−1)/n;

that is, numbers of the form e2πik/n, where k is any positive integer. There
are n such numbers, and if we plot them in the complex plane, we see that
they are the vertices of a regular n-gon inscribed in the unit circle.
• A clever application of the identity eit = cos t+i sin t is in helping to memorize

trigonometric identities; in particular, identities for cosnt, sinnt, where n is a
positive integer. For example, suppose we want to remember the double-angle
identities for cos 2t, sin 2t. Then

(eit)2 = e2it = cos 2t+ i sin 2t,

but (eit)2 is also equal to

(cos t+ i sin t)2 = (cos2 t− sin2 t) + i(2 sin t cos t).

Since these two complex numbers are equal, the real and imaginary parts of
these two numbers must be equal, so cos 2t = cos2 t−sin2 t, sin 2t = 2 sin t cos t.
The idea is the same for cosnt, sinnt, though to be obtain identities for these
functions, we will need to expand (cost + i sin t)n, which in general requires
the binomial theorem.

Suppose z = x + yi is a complex number. Then the complex conjugate of z is the
number z = x − yi. Geometrically, complex conjugation corresponds to reflection
across the x-axis. If z = reiθ, then z = rei(−θ). Notice that zz = (x + yi)(x − yi) =
x2 + y2 = |z|2. Notice that if z is real, then z = z. A very useful property of complex
conjugation is that it commutes with addition and multiplication: that is,

(4) z1 + z2 = z1 + z2, z1z2 = z1 · z2.

One application of this property is showing that the complex roots of any real poly-
nomial always come in complex conjugate pairs.
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Example. If f(x) = a0 + a1x + . . . + anx
n is a real polynomial (that is, all the ai

are real), and if z is a root of f(x), then z is also a root of f(x). Indeed, if f(z) = 0,
then

a0 + a1z + . . .+ anz
n = 0.

If we apply complex conjugation to both sides and apply the fact that conjugation
commutes with addition and multiplication repeatedly, together with the fact that
all the ai are real, we get

a0 + a1 · z + a2 · z2 + . . .+ an · zn = 0.

Since ai = ai, this shows that z is also a root of f(x), as desired.

Finally, we mention a frequently useful inequality called the triangle inequality ,
which states that if z1, z2 are any complex numbers, then

(5) |z1|+ |z2| ≥ |z1 + z2|,
with equality if and only if z1, z2 are non-negative real multiples of each other. This
is a consequence of the usual triangle inequality, since we can interpret 0, z1, z1 + z2
as the vertices of a triangle with side lengths |z1|, |z2|, |z1 + z2|.

2. An index to properties, facts, etc.

• Multiplying complex numbers (Equation 1)
• Reciprocal of a (nonzero) complex number (Equation 2)
• Roots of unity (Equation 3)
• Properties of complex conjugation (Equation 4)
• Triangle inequality (Equation 5)

http://en.wikipedia.org/wiki/Triangle_inequality
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