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Now that we have discussed basic properties of poles and removable singularities,
we will prove a generalization of Cauchy’s Theorem which can handle a functions
with a finite number of poles, and discuss a few applications.

1. The Residue Formula

Suppose f has z0 as a pole but is holomorphic everywhere else. We would like to
evaluate integrals of the form

∫
C
f(z) dz, where C is a circle which encloses z0. For

example, if C is a unit circle and f(z) = 1/z, we are in this situation. The following
theorem and its obvious generalizations provide the key idea:

Theorem 1 (The Residue Formula). Suppose f is holomorphic on an open set con-
taining a circle C (with positive orientation) and its interior, except at a point z0
inside C where f has a pole. Then∫

C

f(z) dz = 2πi resz=z0f(z).

Proof. The proof is actually fairly easy given what we have proven already. First,
recall that in the proof of the Cauchy Integral Formula we made use of a keyhole
contour which enclosed z0, and let the corridor width go to 0. Using the same idea
here, we find that ∫

C

f(z) dz =

∫
Cε

f(z) dz,

where Cε is a small circle of radius ε centered at z0. We also proved earlier that inside
some (sufficiently small) disc centered at z0, we could write

f(z) =
a−n

(z − z0)n
+

a−(n−1)
(z − z0)n−1

+ . . .+
a−1
z − z0

+G(z),

where G(z) is holomorphic. If we choose ε so that Cε is small enough so that this
expression is valid on all of Cε and its interior, then we have∫

C

f(z) dz =

∫
Cε

f(z) dz =

∫
Cε

a−n
(z − z0)n

+
a−(n−1)

(z − z0)n−1
+ . . .+

a−1
z − z0

+G(z) dz.
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We can integrate this expression term-by-term; notice that all but one of these
terms have primitives in the punctured disc enclosed by Cε. (For the a−k/(z − z0)k
terms, for k ≥ 2, we have an explicit primitive, and G(z) has a primitive because it
is holomorphic in all of Cε and its interior, including the point z0.) In particular the
above expression actually equals∫

Cε

a−1
z − z0

dz = 2πia−1 = 2πi resz=z0f(z),

as desired. �

This theorem has obvious generalizations to integrals over contours C which are
not necessarily circles; since we are using the idea in the proof of the Cauchy Integral
Formula we can use any contour which is permissible in the Cauchy Integral Formula.
At this point for us, this includes contours like rectangles, triangles, ellipses, keyhole
contours, etc. There is also the obvious generalization to the case where f has finitely
many poles inside C.

Corollary 1. Suppose f is holomorphic on a curve C as above (circle, triangle,
rectangle, etc.) and its interior except at a finite number of poles z1, z2, . . . , zn in the
interior of C. Then∫

C

f(z) dz = 2πi(resz=z1f(z) + . . .+ resz=znf(z)).

Examples.

• This theorem makes a variety of calculations which we did in the past fairly
trivial. For example, recall a homework assignment which asked you to show
that

∫
C

1/(z − a) dz = 2πi if C was a circle containing the point a. The
function f(z) = 1/(z− a) has a pole at z = a of order 1 and residue 1, so the
residue theorem immediately implies that

∫
C

1/(z − a) dz = 2πi.
• The residue formula is powerful enough to allow flexibility in the shape of
C. For example, our calculation that

∫
C

1/z dz = 2πi for circles centered
at 0 used an explicit parameterization of C, and the calculation was easy
because of cancellation in terms. Direct evaluation of

∫
γ

1/z dz where γ is

a rectangular contour, triangle, ellipse, etc. containing would be much more
tedious (though still possible), but the residue theorem immediately tells us
these are also all equal to 2πi as well.
• Similarly, recall the homework assignment which asked for the calculation of∫

C
1/(z − a)(z − b) dz, where C was a circle containing a but not b. The

function 1/(z − a)(z − b) has poles of order 1 at z = a and z = b, and the
residues at those points are 1/(a − b) and 1/(b − a), respectively. Therefore
the residue formula implies that

∫
C

1/(z − a)(z − b) dz = 2πi/(a − b), which
was the answer you did a non-trivial calculation to compute.

If C had contained both a, b, then the residue theorem implies that
∫
C

1/(z−
a)(z − b) dz = 2πi/(a− b) + 2πi/(b− a) = 0.
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2. Applications and corollaries of the residue formula

The residue formula has some easy corollaries which nevertheless are useful in a
variety of situations. Once such corollary provides a way (at least in principle) to
obtain information on the number of poles and zeros of a function inside a contour.

Suppose f(z) is holomorphic on an open set Ω except at a finite number of poles
z1, . . . , zn. Consider the function f ′(z)/f(z): this is holomorphic everywhere on Ω
except at the poles zi as well as the zeros of f(z). Suppose wi is a zero of order ni of
f(z). Then near wi we may write

f(z) = (z − wi)nihi(z),

where hi(z) is holomorphic and nonzero near wi. Then f ′(z) = ni(z−wi)ni−1hi(z) +
(z − wi)nih′i(z), so

f ′(z)

f(z)
=
ni(z − wi)nihi(z)

(z − wi)nihi(z)
+

(z − wi)nih′i(z)

(z − wi)nihi(z)
=

ni
(z − wi)

+
h′i(z)

hi(z)
.

Notice that h′i/hi is holomorphic at and near wi, since hi is nonzero at and near wi.
Therefore f ′/f has a pole of order 1, with residue ni at wi.

Similarly, if zi is a pole of order mi, one can compute that f ′/f has a pole of order
1 with residue −mi at mi. (This is a good exercise to check on your own.) As we
mentioned earlier, the only singularities of f ′/f occur at either poles of f or zeros of
f . Therefore, we an application of the residue formula proves the following theorem:

Theorem 2 (Argument Principle). Suppose f(z) is holomorphic in an open set Ω
except at a finite number of poles. Let γ be any circle (or more generally, any contour
permissible in the residue formula) on which f has no zeros or poles. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz = N − P,

where N is the total number of zeros of f inside γ and P the total number of poles
inside γ (each counted with multiplicity).

Why is this result sometimes called the argument principle? Consider the following
heuristic (ie, non-rigorous) reason: we can think of f ′/f as being the derivative of
log f(z) (if it is possible to define such a function). On the other hand, log reit =
log r + it, where t is ambiguous up to a multiple of 2πi. Therefore, we can think of∫
γ
f ′/f as measuring the total change in the argument of f as we travel along γ. This

can be made rigorous, but is probably best illustrated with a few examples.

Examples.

• Let f(z) = z and γ be the unit circle. As we wind our way around the unit
circle, the argument of f(z) changes from 0 (say) to 2π. This is reflected
by the fact that f(z) = z has exactly one zero of order 1 inside γ, so that
N = 1, P = 0.
• Let f(z) = z2 and γ be the unit circle. As we wind our way around the

unit circle, the argument of f(z) changes from 0 (say) to 4π. Indeed, letting
z(t) = eit, we see that f(z(t)) = e2it, so the argument changes from 0 to 4π.
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This is reflected in the fact that f(z) = z2 has a single zero of order 2 inside
γ, so that N = 2, P = 0.
• Let f(z) = 1/z and γ be the unit circle. As we wind our way around the unit

circle, the argument of f(z) changes from 0 (say) to −2π. This is reflected by
the fact that f(z) = 1/z has exactly a single pole of order 1 inside γ, so that
N = 0, P = −1.

The argument principle actually has useful and important numerical applications,
as well. Suppose you know that f(z) is holomorphic, say, so has no poles, and you
want to compute the zeros of f(z), or at least you know the location of all the poles
of f(z). For example, this is the case for the Riemann zeta function. If you want
to locate the zeros of f(z), you can try evaluating

∫
γ
f ′/f for various contours γ

numerically, even if you do not actually know how to integrate f ′/f . Because N −P
is always an integer, you as you make better numerical approximations to

∫
γ
f ′/f ,

your answers will converge towards an integer.
If you can obtain reasonable bounds on the error of your numerical integration,

then by taking a sufficiently accurate numerical approximation of the exact value
of the integral you can determine the nearest integer to your numerical calculation,
and with good error bounds and sufficiently accurate approximation this will actually
compute N − P correctly.

The following theorem sometimes provides a way to count the number of zeros of
a holomorphic function inside a contour:

Theorem 3 (Rouche’s Theorem). Suppose f and g are holomorphic functions in
and on a closed curve C which has an interior (so, a circle, polygon, ellipse, etc.).
If |f | > |g| on C, then f and f + g have the same number of zeros inside C. (Notice
that |f | > |g| automatically implies that f , f + g are nonzero on C.)

Proof. Let 0 ≤ t ≤ 1. Consider the function ft(z) = f(z) + tg(z). We can think of
this as a continuous deformation of the function f(z) to the function f + g of z. If
nt is the number of zeros of ft inside of C, then to prove the theorem we will show
that nt is a continuous function of t. Since nt is an integer, if we prove this nt must
be constant for 0 ≤ t ≤ 1, so that f, f + g have the same number of zeros inside t.
(If nt is continuous, then nt cannot change, for that would be a discontinuity in nt.)

Since ft has no zeros or poles on C, the argument principle tells us that

nt =

∫
C

f ′t(z)

ft(z)
dz.

On the other hand, since f(z) 6= 0 for z ∈ C, f ′t/ft is a continuous function in both
z and t, at least when z is restricted to C. One can then show that this implies nt is
continuous in t. (In other words, integrating a continuous function in two variables,
where each variable is restricted to a compact set, yields a continuous function in one
variable. We essentially proved this in an earlier homework assignment.) �

You should think of Rouche’s Theorem as a type of perturbation statement. The
hypothesis that |f | > |g| means that you can think of f+g as a slight perturbation of
f , and the theorem states that under these small perturbations, the number of zeros
of f inside C is unchanged. As an application, we can prove a quantitative version
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of the Fundamental Theorem of Algebra, which provides upper bounds on the size of
the roots of a complex polynomial.

Theorem 4. Suppose f(z) = zn+an−1z
n−1 + . . .+a0 is a complex polynomial. Then

every root zi of f(z) satisfies |zi| ≤ 1 + max(|a0|, |a1|, . . . , |an−1|).

Proof. Let g(z) = zn and let M = max(|a0|, . . . , |an−1|). We claim that |g(z)| ≥
|f(z)− g(z)| on |z| = 1 +M .

Indeed, notice that when |z| = 1 + M , |g(z)| = |zn| = (1 + M)n. On the other
hand, f − g = an−1z

n−1 + . . .+ a0, so

|f−g(z)| ≤ |an−1||z|n−1+. . .+|a0| ≤M(1+M)n−1+M(1+M)n−2+. . .+M = M
(1 +M)n − 1

1 +M − 1
= (1+M)n−1.

So |f − g| < |g|, as desired. Then Rouche’s Theorem says g(z), f − g + g = f(z)
have the same number of zeros inside |z| = 1 + M . Since g(z) = zn has n zeros
inside this circle, this means that f(z) does as well, and the fundamental theorem of
algebra tells us f(z) has exactly n zeros in total, so all the zeros of f(z) are inside
this circle. �

The main idea of this proof is that sometimes it is possible to pick out the zeros of
a polynomial using Rouche’s theorem by identifying the dominant term on a curve
of interest. In this proof, it is the highest order term, zn, which dominates all others
on |z| = 1 +M . We can adopt this method to sometimes count zeros of polynomials
(or sometimes even more general functions) inside various curves.

Example. Let f(z) = z3−2z2+5z−1. Count the number of zeros inside |z| = 1. To
solve this problem using Rouche’s theorem, we identify the largest term on |z| = 1.
Notice that |zn| = 1 regardless of what n is on the unit circle, so |z3| = 1, | − 2z2| =
2, |5z| = 5, | − 1| = 1. This means the largest term is 5z, so let g(z) = 5z. Also,
notice that 5z is large enough to dominate the sum of all other terms on |z| = 1,
because the triangle inequality implies that |z3 − 2z2 − 1| ≤ |z3| + |2z2| + 1 = 4 on
|z| = 1. Therefore, if we let h(z) = z3 − 2z2 − 1, then |g(z)| > |h(z)| on the unit
circle, so Rouche’s Theorem implies that g(z) and g + h = f have the same number
of zeros inside |z| = 1. Since 5z has exactly one zero inside |z| = 1, this means f(z)
has exactly one zero inside |z| = 1. (As a matter of fact, one can use a computer to
check the roots are z ≈ 0.216757, 0.891622± 1.95401i.)

Obviously this method is not foolproof, because to easily use it requires functions
which have one term much larger than the rest of the function on the curve of interest,
and it must be easy to compute the number of zeros of that one term inside the curve
of interest.

3. Contour integration over more general curves

So far many of our general theorems about contour integrals have required some
sort of hypothesis on the shape of the curve C. In particular, we often require C
to be a circle, triangle, rectangle, keyhole contour, etc. What about more general
shapes?
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We state a theorem which provides a method for evaluating integrals over more
general curves. Suppose C0 and C1 are two curves parameterized by z0(t), z1(t), 0 ≤
t ≤ 1, where z0(0) = a = z1(0), z0(1) = b = z1(1). We say that C0 and C1 are
homotopic in Ω if there exists a continuous function F (t, s) : [0, 1] × [0, 1] → Ω
such that F (t, 0) = z0(t), F (t, 1) = z1(t) and F (0, s) = a, F (1, s) = b for all s. We
sometimes call F a homotopy of C0 to C1.

You should think of F (t, s) as representing a function zs(t) which parameterizes
a curve in the variable t. The variable s parameterizes the deformation of z0 to
z1. The fact that F is continuous and takes values in Ω says that the deformation
of z0 to z1 is continuous and does not leave the set Ω. Finally, the condition that
F (0, s) = a, F (1, s) = b for all s corresponds to the fact that the endpoints of the
curves during this deformation process remain fixed.

Examples.

• Let Ω = C, and let C0 be the line segment connecting 1 to -1, and C1 be
the semicircle parameterized by z1(t) = eπit, 0 ≤ t ≤ 1. Then C0 and C1

are homotopic in Ω. Intuitively, we can see this because we can visualize
a continuous deformation of C1 to C0, say. Rigorously, one has F (t, s) =
(1− s)(1− 2t) + seπit as a homotopy: when s = 0 we have F (t, 0) = (1− 2t),
which parameterizes C0, and when s = 1, we have F (t, 1) = eπit, which
parameterizes C1. Also, F (t, s) is continuous on [0, 1] × [0, 1], and F (0, s) =
(1− s) + s = 1, F (1, s) = (1− s)(−1) + s(−1) = −1.
• Suppose C0 is the unit circle z0(t) = e2πit, and C1 is the stationary curve
z1(t) = 1. Then C0 is homotopic to C1 in C. Intuitively, we can see this
because we can shrink the unit circle to a point. Can you find a rigorous
homotopy of C0 to C1?

The main theorem of interest, which we will not prove (due to shortage of time,
not because the proof is advanced) is the following:

Theorem 5. Suppose f is holomorphic in an open set Ω. Suppose C1 is homotopic
to C2 in Ω. Then ∫

C1

f(z) dz =

∫
C2

f(z) dz.

A vague sketch of the proof is as follows: we look at the image of the homotopy
F in Ω. If this image were contained in an open disc contained in Ω, we could apply
the theorem which tells us that f has a primitive in this open disc, and then the
theorem would be easy to prove. However, in general, we are not in this situation.
Nevertheless, we can try to salvage this idea by constructing small discs contained
in Ω which cover the image of the homotopy, and then construct primitives on small
discs. One shows that it is possible to chain together lots of small discs and use
what we know about integrals of functions with primitives in small discs to prove the
theorem. See the book for a detailed proof.

This key part of this theorem is that we require the homotopy stay in the domain
of holomorphy of f .
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Example. Let f(z) = 1/z. Then f is holomorphic on C−0. Notice that
∫
S1 1/z dz =

2πi, whereas if C is the stationary curve at 1 then
∫
C

1/z dz = 0. Therefore, the above
theorem implies that no homotopy of S1 to a single point 1 exists on C− 0. In other
words, the fact that

∫
S1 1/z dz 6= 0 is reflected in the fact that the space C− 0 has a

hole at 0.
Suppose Ω is an open connected set in which any closed curve γ is homotopic a

stationary curve. Then we call Ω a simply-connected (open) set. A consequence of
the above theorem is that

Corollary 2. Suppose f is holomorphic on a simply-connected set Ω. Then∫
γ

f(z) dz = 0

for any closed curve γ in Ω.

Another consequence of this theorem is the following:

Corollary 3. Suppose f is holomorphic on a simply-connected set Ω. Then f has a
primitive function F on Ω.

See the textbook for a short proof; it uses similar ideas to the theorem which proves
the existence of a primitive of holomorphic functions on a disc. The primitive can
be defined using a contour integral; more specifically, if z0 is an arbitrary but fixed
point in Ω, then one can define

F (z) =

∫
C

f(w) dw,

where C is any curve contained in Ω which connects z0 to z. One then shows that
F (z) is holomorphic on Ω and is a primitive for f(z). Notice that the fact that Ω is
simply-connected guarantees that F (z) is the same regardless of the choice of curve
C which connects z0 to z.

These theorems raise a natural question: what types of spaces are simply-connected?
In general, one might want to take a topology course to answer this question. How-
ever, we can give a few examples based on elementary knowledge right now.

Example. A convex set in C is a set Ω such that if z1, z2 ∈ Ω, then the line segment
joining z1 and z2 is still in Ω. We claim any connected convex set is simply-connected.
Indeed, given a closed curve γ parameterized by z(t), consider the homotopy F (t, s) =
(1−s)z(t)+sz(0). Then F (t, 0) = z(t), F (t, 1) = z(0), F (0, s) = (1−s)z(0)+sz(0) =
z(0), F (1, s) = (1−s)z(1)+sz(1) = z(1). Also, F is clearly continuous, and F (t, s) ∈
Ω, because F (t, s) is a point on the line segment joining z(t) to z(0).

So, for example, C is clearly convex, hence is simply-connected. Other convex
sets include rectangles, triangles, circles, and ellipses. Notice, however, that keyhole
contours and arbitrary polygons (even quadrilaterals) are not necessarily convex.
Despite this fact, one can still show, using rigorous techniques from topology (in par-
ticular, an idea known as homotopy-equivalence), that keyhole contours and interiors
of polygons are simply-connected.
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4. Defining the logarithm

We can use what we just learned about simply-connected sets and integrals to
define the logarithm on certain subsets of C. We would like the following to be true
of a log function: if f(z) = log z, then f ′(z) = 1/z, and we would also like elog z = z.
Notice that it is probably unreasonable to ask log ez = z, at least for all z, because
ez is not an injective function: that is, there are many values of z for which ez is the
same. More specifically, ez1 = ez2 if and only if z1− z2 = 2nπi, for some integer n. If
it is possible to find a f for which all of the above are true on a subset Ω of C, then
we say that it is possible to define a log function on Ω.

Because ez is not injective, we immediately see that if it is possible to define a log
function, there will be multiple possible choices for the value of log z. For example,
log 1 could be equal to any value 2nπi, since e2nπi = 1. If it is possible to define log
on a set Ω, we will want to choose the values of log in such a way to ensure that log
is continuous on Ω.

If we want the derivative of log z to be 1/z, then we already know that it will be
impossible to define log on any subset of C − 0 which contains a circle surrounding
the origin. Therefore, we will only be able to define log functions on certain subsets
Ω of C− 0.

Suppose Ω is a simply-connected open set which does not contain 0 but contains
1. Then 1/z is holomorphic on all of Ω, then by the previous section we can define a
holomorphic function

F (z) =

∫
C

1

w
dw,

where C is any curve connecting 1 to z in Ω. Then F ′(z) = 1/z is immediate, and
also F (1) = 0. We now want to show that eF (z) = z. To do so, consider the derivative
of ze−F (z). Since F (z) is holomorphic on Ω, so is ze−F (z), and we have

d

dz
ze−F (z) = e−F (z) − F ′(z)ze−F (z) = 0.

Therefore, by a theorem we proved much earlier, ze−F (z) is constant on Ω. Suppose
ze−F (z) = c. First, notice that c = 0 is impossible, because if ze−F (z) = 0 on all of Ω,
then e−F (z) = 0, which is impossible since e−F (z) is never 0. Therefore eF (z) = z/c. If
we plug in z = 1, we find that eF (1) = 1/c, or 1 = 1/c, or c = 1. Therefore eF (z) = 1.

In summary, we have proven the following:

Theorem 6. If Ω is an open simply-connected set containing 1 but not 0, and we
define

F (z) =

∫
C

1

w
dw

where C is any curve connecting 1 to z contained in Ω, then F (z) is holomorphic on
Ω, F ′(z) = 1/z, and eF (z) = 1.

Example. Let Ω be C with the negative real axis removed (ie, C with points −x
removed, where x ≥ 0.) Then Ω is simply-connected (see exercise 21b in the text
about star-shaped domains for a suggestion on how to prove this fact), contains 1,
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and does not contain 0. The above function F (z) for this choice of Ω is sometimes
called a principal branch of the logarithm function. This terminology refers to the
fact that, a priori, there are many possible choices for log on this domain, because of
the fact that ez is periodic with period 2πi. We select one of these choices.

This choice for log is called the principal branch because F (z) agrees with the usual
log z when z > 0 is a positive real number. Indeed, given arbitrary z > 0 positive
real, we can select C to be the straight line segment connecting 1 to z, and then
F (z) =

∫ z
1

1/w dw, which is how the log function is usually defined in real calculus.
More generally, for this choice of the branch of log, given z = reit, where t is chosen

to satisfy −π < t < π, one has log z = log r + it. Indeed, we can choose C to be the
piecewise-smooth curve consisting of the straight line segment from 1 to r, and then
the circular arc from r to reit. The integral over the first part of this curve gives
log r, and one easily checks the integral over the circular arc gives it.

For example, assuming that log denotes the principal branch of the logarithm
function, we have log 1 + i = log

√
2eiπ/4 = log

√
2 + iπ/4. Similarly, log i = log 1 ·

eπi/2 = log 1 + iπ/2 = iπ/2.

More generally, it is not necessary that Ω be a simply-connected set which contains
1. We can let Ω be any simply-connected set which does not contain 0, and then alter
the definition of F (z) accordingly to ensure that eF (z) = z. In particular, when we
define C as any curve connecting 1 to z, we replace 1 with an arbitrary point z0 in Ω,
and then we define F (z) =

∫
C
f(w) dw + c, where c is a constant such that ec = z0.

(Indeed, if z = z0, then F (z0) = 0 + c, so we want eF (z0) = ec = z0.)
The only possible ambiguity in the definition of a log function is due to the fact

that ez is periodic with period 2πi. More specifically, if Ω is an open set (simply-
connected or not) in which it is possible to define F (z), G(z) which are both log
functions (in the sense that F ′(z) = G′(z) = 1/z and eF (z) = z, eG(z) = z for all
z ∈ Ω, then F (z) − G(z) = 2nπi for some integer n, for all z ∈ Ω. Indeed, the
fact that eF (z) = eG(z) = z on all of Ω implies that F (z) = G(z) + 2πin(z) for some
function n(z) defined on Ω which only takes integer values. Since F,G are both
holomorphic, hence continuous, it must be the case that n(z) is constant on Ω, hence
equal to some integer n on all of Ω.

It is important to remember that when speaking of the logarithm function for
complex numbers, you must always keep in mind two facts: first, the logarithm
cannot be defined on all subsets of C, but it can be defined for simply-connected
subsets containing 1 but not 0 (or any subsets of such subsets), and that this definition
always comes with a choice of branch of the log function. This choice must be specified
for the log function to be unambiguous; if Ω is the slit plane above, then the principal
branch is frequently chosen (since it agrees with the usual log function on positive
reals). But in other situations the choice might not be so obvious; for example, if Ω
is a small disc centered at a negative real number. In this case when speaking of log
be sure to make completely explicit what branch of the log you are choosing.

Example. Suppose Ω is the slit plane, and we define log z not to be the principal
branch, but the principal branch plus 4πi. Then log 1 = 4πi, and log i = 4πi+iπ/2 =
9πi/2. Notice that elog 1 = e4πi = 1 is still satisfied, as is elog i = e9πi/2 = i.
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Finally, as a nice application of the logarithm function, we can define arbitrary
powers of complex numbers on any subset Ω on which it is possible to define a log
function. Let α be an arbitrary complex number. Fix a branch of the logarithm on
Ω. Then we can let zα = eα log z. In many situations, 1 ∈ Ω, and we want to choose
the principal branch of the logarithm, although this is not always necessary.

Example. Let α = 1/2, and Ω be the slit plane. Choose the principal branch of log
on Ω. If z = reit with −π < t < π, then z1/2 = e1/2 log z = e1/2 log r+it = e1/2 log r ·eit/2 =√
r · eit/2. Notice that (

√
r · eit/2)2 = reit = z, as expected. For example, with this

choice of branch of log, we have i1/2 = e1/2 log i = e1/2·πi/2 = eπi/4 = 1/
√

2 + 1/
√

2i.
Similarly, −i1/2 = 1/

√
2− 1/

√
2i. Interestingly enough, notice that for this choice of

Ω, −11/2 is undefined.
If we had chosen the branch of the log obtained by adding 2πi to the principal

branch, we would have obtained a different function z1/2. For example, 11/2 = e1/2 log 1.
If log 1 = 0 (principal branch), then 11/2 = e0 = 1, as expected. However, if we add
2πi to the principal branch of log, then 11/2 = e1/2 log 1 = e1/2·2πi = eπi = −1.
Therefore we see that choosing different branches of logs corresponds to the fact that
frequently fractional powers are not uniquely defined.

Furthermore, notice that it is impossible to define z1/2 as a holomorphic function
on all of C. A rigorous proof of this is left as an exercise.
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