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So far, our focus of study has been holomorphic functions. We will now concentrate
on understanding points where functions are not holomorphic. In particular, we want
to generalize our understanding of the behavior of f(z) = 1/z near z = 0 to a broader
range of functions, and eventually prove interesting theorems about those functions.
In particular, we will prove a generalization of Cauchy’s Theorem to functions which
are more general than holomorphic functions.

1. Singularities: an introduction

Let f be a function defined on an open set Ω. If f is not defined at z0, but
is defined in some punctured disc (sometimes also called a deleted neighborhood)
0 < |z − z0| < r, then we call z0 a (point, isolated) singularity of f . The following
three examples of singularities turn out to represent each of the three broad types of
behavior of singularities in complex analysis:

Examples.

• Consider f(z) = 1/z defined on C− 0. Then z = 0 is a singularity of f , since
f is undefined at 0, but defined everywhere else. Notice that |f(z)| → ∞
as z → 0, regardless of the direction z approaches 0 in. More generally,
f(z) = 1/zn, where n ≥ 1 is a positive integer, has z = 0 as a singularity, and
|f(z)| → ∞ as z → 0. Recall that

∫
S1 1/zn dz = 2πi if n = 1 and 0 otherwise.

• Consider f(z) = z/z defined on C − 0. This is just the constant function
f(z) = 1 defined on C − 0. With this definition, z = 0 is a singularity of
f(z). However, notice that we can just define f(0) = 1 to make f(z) not
just continuous, but actually holomorphic at z = 0. (Recall that if we can
define f(0) to make f continuous at 0, f will automatically be holomorphic
at 0, because f is already holomorphic in a punctured disc centered at 0.)
Furthermore, notice that, unlike the previous example, |f(z)| is bounded near
z = 0.
• Consider f(z) = e1/z. This example is genuinely different from the previous

two examples. On the one hand, it is impossible to define f(0) to make f
continuous at 0, because as you saw in a homework assignment, e1/z takes
every nonzero value infinitely often near 0. On the other hand, |f(z)| 6→ ∞
as z → 0 as well.
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If z0 is a singularity of f(z) and it is possible to define f(z0) in such a way to make
f holomorphic at z0, then we call z0 a removable singularity of f . In some ways,
removable singularities are the least interesting type of singularity, because they arise
from holomorphic functions with a few points in the domain deleted. Nevertheless
one can prove interesting theorems about removable singularities, which we will do
later.

2. Zeros of holomorphic functions

As the example f(z) = 1/zn might indicate, a good strategy for understanding
singularities might be to understand zeros of holomorphic functions first, since the
singularities of 1/zn arise at the points where the denominator zn has zeros.

The main theorem on zeros which we will use is the following:

Theorem 1. Suppose f(z) is a holomorphic function on an open set Ω which is
not identically zero. Let z0 ∈ Ω be a point with f(z0) = 0. Then there exists a
unique positive integer n such that there exists an open disc U containing z0 and a
holomorphic function g(z) defined on U such that g(z) is nonzero on U and f(z) =
(z − z0)ng(z) on U .

Proof. Because f is holomorphic at z0, we can find a power series expansion for f at
z0:

f(z) =
∞∑
k=0

ak(z − z0)k.

The assumption that f is not identically 0 guarantees that not all coefficients ak equal
0. (If all the coefficients did equal 0, then f = 0 on some open disc, which implies f
is 0 on all of Ω.) Furthermore, since f(z0) = 0, a0 = 0. Let n be the smallest positive
integer such that an = 0. We claim that n is the integer in the theorem.

In the disc of convergence of the above power series, we have

f(z) = (z − z0)n
∞∑
k=n

ak(z − z0)k−n.

Notice that after factoring out (z−z0)n we have another power series which converges
in the same disc as the original power series. Let g(z) =

∑∞
k=n ak(z − z0)k−n be this

new power series; evidently g is holomorphic in its open disc of convergence. We need
to show that there exists some open disc U containing z0 such that g(z) is nonzero
on all of U .

Since an 6= 0, we must have that g(z0) 6= 0. Since g(z) is continuous on its domain,
there exists some open disc centered at z0 such that g is never 0 on that open disc.
Take U to be this open disc.

Finally, we need to prove that the n described above is unique. Suppose m were
another positive integer such that there existed an open disc V and function h(z) such
that f(z) = (z− z0)mh(z) on V . Then we have f(z) = (z− z0)ng(z) = (z− z0)mh(z)
on U ∩ V , which is an open disc containing z0. Without loss of generality we may
assume n ≥ m; then (z − z0)n−mg(z) = h(z) at all points except z0. If n > m, then
(z−z0)n−mg(z)→ 0 as z → z0, which by continuity of h at z0 implies that h(z0) = 0,
contradicting the assumption that h(z0) 6= 0. Therefore m = n, as desired. �
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The unique positive integer n in the above theorem is called the order of the zero
of f at z0. A zero of order 1 is often called a simple zero.

Examples.

• f(z) = zn has a zero of order n at z = 0. Indeed, zn = (zn) · 1.
• f(z) = sin z has a zero of order 1 at z = 0. To see this, use the power series

expansion for sin z at z = 0:

sin z = z − z3

3!
+ . . . .

By the proof of the previous theorem, the order of the zero z = 0 is the power
in the first nonzero term of the power series expansion, hence is z = 1. By
periodicity of sin z, each of the zeros z = nπ is also a zero of order 1.
• Suppose f(z) has a zero of order n at z0 and g(z) has a zero of order m at
z0. Then fg(z) (the product of f and g) has a zero of order n + m at z0.
Indeed, if we can write f(z) = (z − z0)nh1(z) and g(z) = (z − z0)mh2(z) near
z0, where h1(z0), h2(z0) 6= 0, then fg(z) = (z− z0)n+mh1(z)h2(z) near z0, and
h1(z0)h2(z0) 6= 0, so h1h2 is nonzero in some open disc containing z0.

3. Poles of holomorphic functions

Suppose f is holomorphic and has a singularity at z0. If f is nonzero in some
punctured disc centered at z0, then 1/f is holomorphic in that punctured disc. If
we define 1/f at z0 to be equal to 0, we say that f has a pole of order n if 1/f is
holomorphic at z0 and has a zero of order n at z0. If z0 is a pole of order 1 for f , we
sometimes say that z0 is a simple pole of f . Alternately, f has a pole at z0 if 1/f is
nonzero in some punctured disc centered at z0 and limz→z0 1/f(z) = 0.

Examples.

• The simplest and most useful example of poles are the functions f(z) = 1/zn,
where n ≥ 1 is a positive integer. Then 1/f = zn in all of C − 0, and if we
define 1/f(0) = 0, then 1/f is holomorphic at 0. Since we already know that
zn has a zero of order n at 0, this means that 1/zn has a pole of order n at
z = 0.
• Consider the function f(z) = 1/z + 1/(z − 1). This is holomorphic on all of
C− {0, 1}. We have

1

f
=

1
1
z

+ 1
z−1

=
z(z − 1)

z − 1 + z
=
z(z − 1)

2z − 1
.

Notice that limz→0 1/f = 0(−1)/(−1) = 0, which means that 1/f is continu-
ous at z = 0 if we define 1/f(0) = 0. Since 1/f is already holomorphic in a
punctured disc centered at z = 0, this means that 1/f is also holomorphic at
z = 0. Also, we can see that 1/f has a zero of order 1 at z = 0, since we can
write 1/f = z((z − 1)/(2z − 1)), where (z − 1)/(2z − 1) is holomorphic in a
neighborhood of 0 and is nonzero in that neighborhood. Therefore z = 0 is a
pole of order 1 for f . Similarly, z = 1 is also a pole of order 1.
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• Consider f(z) = 1/(sin z). Then 1/f = sin z for z 6= nπ, and if we define
1/f(nπ) = 0, then 1/f is continuous, hence holomorphic, at z = nπ. We
already showed that sin z had zeros of order 1 at z = nπ, so 1/(sin z) has
poles of order 1 at z = nπ.

The following propositions state basic facts about poles which we will frequently
use, either implicitly or explicitly.

Proposition 1. Suppose f has a pole of order n at z0. Then there exists an open disc
D centered at z0 and a nonzero holomorphic function h(z) on D such that f(z) =
(z − z0)−nh(z) on the punctured disc D − {z0}.

Proof. Since 1/f is holomorphic at z0 and has a zero of order n there, we may write
1/f(z) = (z − z0)ng(z) in an open disc D centered at z0 such that g(z) 6= 0 on D.
Then f(z) = (z − z0)−n/g(z), so set h(z) = 1/g(z). Since g(z) is never zero on D,
this means h(z) is nonzero and holomorphic on D as well. �

Proposition 2. Suppose f has a pole of order n at z0. Then there exists an open
disc D centered at z0, a holomorphic function G(z) on D, and complex numbers
a−n, . . . , a−1 such that

f(z) =
a−n

(z − z0)n
+

a−(n−1)
(z − z0)n−1

+ . . .+
a−1
z − z0

+G(z)

in D − {z0}. Furthermore, a−n 6= 0.

Proof. Using the previous proposition, there exists an open disc D containing z0 such
that f(z) = (z − z0)−nh(z) on D, where h(z) is nonzero on D. In particular, we can
find a power series expansion

∑
bk(z − z0)k for h(z) centered at z0, where b0 6= 0. If

necessary we shrink D so that this power series converges on all of D. Then

f(z) = (z − z0)−nh(z) =
∞∑
k=0

bk(z − z0)−n+k.

We can then take a−n = b0, a−(n−1) = b1, . . . , a−1 = bn−1, and G(z) =
∑∞

k=n bk(z −
z0)

k−n. �

Both of these propositions have converses, in the sense that any function of the
types described above (such as (z − z0)

−nh(z), h(z0) 6= 0) are functions with poles
of order n at z0. The non-holomorphic part of the above expression; that is, the
function

a−n
(z − z0)n

+
a−(n−1)

(z − z0)n−1
+ . . .+

a−1
z − z0

,

is called the principal part of f(z) at z0. Also, the complex number a−1 (we have
n ≥ 1, so there will always be a number a−1) is called the residue of f at z0. We
sometimes write resz=z0f(z) for this complex number.

The reason we single out a−1 for special mention is because it belongs to the
only part of the principal part of f(z) at z0 which has no primitive function in any
punctured disc centered at z0. In particular, notice that for any circle C centered at
z0 with positive orientation,
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∫
C

a−n
(z − z0)n

+
a−(n−1)

(z − z0)n−1
+ . . .+

a−1
z − z0

dz = 2πia−1.

More generally, if C is sufficiently small (small enough to fit in the disc D in the
previous proposition), then ∫

C

f(z) dz = 2πia−1,

since
∫
C
G(z) dz = 0 by Cauchy’s Theorem.

Examples.

• The function f(z) = 1/z has a simple pole at z = 0, and the residue of that
pole is 1.
• If n ≥ 2 is a positive integer, then f(z) = 1/zn has a pole of order n at z = 0,

and the residue of that pole is 0. Notice that
∫
C

1/zn dz = 0 for any circle
centered at 0.
• If f(z) = 1/(z + i)2 + 3/(z + i), then f(z) has a pole of order 2 at z = −i,

and this pole has residue 3. Given any circle C centered at −i,
∫
C
f(z) dz =

3 · 2πi = 6πi.

• If f(z) =
sin z

z2
, then z = 0 is a pole of order 1. Indeed,

sin z

z2
=

1

z
− z

3!
+
z3

5!
− . . . ,

so we see that sin z/z2 has a pole of order 1 and residue 1 at that pole.

Sometimes it is either computationally intensive or simply not feasible to directly
compute the principal part of a pole of f(z). In certain situations, it is still possible
to calculate the residue of poles of f(z); for example, the following proposition is
sometimes useful.

Proposition 3. Suppose f(z) has a simple pole at z0. Then

resz=z0f(z) = lim
z→z0

(z − z0)f(z).

More generally, if f(z) has a pole of order n at z0, then

resz=z0f(z) = lim
z→z0

1

(n− 1)!

dn−1

dzn−1
(z − z0)nf(z).

Proof. By the previous proposition, in an open disc D containing z0 we have

f(z) =
a−n

(z − z0)n
+

a−(n−1)
(z − z0)n−1

+ . . .+
a−1
z − z0

+G(z),

so

(z − z0)nf(z) = a−n + a−(n−1)(z − z0) + . . .+ a−1(z − z0)n−1 +G(z)(z − z0)n.

If we differentiate this n− 1 times with respect to z, we get
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dn−1

dzn−1
(z − z0)nf(z) = (n− 1)!a−1 + (z − z0)H(z),

for some holomorphic function H(z) in D. (Apply the product rule repeatedly to see
this is true.) Then the proposition follows by taking a limit as z → z0. �

The previous examples are useful in sometimes useful in situations where calculat-
ing the principal part exactly is difficult, but we have information about power series
of certain relevant functions.

Examples.

• Let f(z) = 1/ sin z. Suppose we want to compute the residue of the simple
pole z = 0. Then the previous proposition implies that

resz=01/ sin z = lim
z→0

z

sin z
.

We know that limz→0 sin z/z = 1 (for example, use the power series expansion
for sin z), so the residue of z = 0 for 1/ sin z is 1.

Similarly, consider f(z) = 1/ sin(πz). This function has simple poles at all
integers. At the integer z = 0, the residue is given by limz→0 z/ sin πz. By
similar reasoning as before, limz→0 sin πz/z = π, so the residue of 1/ sin(πz)
at z = 0 is 1/π.
• Let f(z) = (z2 + 2z− i)/(z+ 2). Then z = −2 is a simple pole of f(z). (This

is true because the numerator, z2 + 2z − i, is not 0 at z = −2.) Then

resz=−2f(z) = lim
z→−2

(z + 2)f(z) = lim
z→−2

z2 + 2z − i = −i.

• Let f(z) = 1/(z − 1)2 + z2/(z − 1). Then z = 1 is a pole of order 2, because
limz→1(z−1)2f(z) = limz→1 1+z2(z−1) = 1 6= 0, while limz→0(z−1)3f(z) =
limz→1(z − 1) + z2(z − 1)2 = 0.

To compute the residue at z = 1, we use

resz=1f(z) = lim
z→1

1

1!

d

dz
(z − 1)2f(z) = lim

z→1

d

dz
1 + z2(z − 1) = lim

z→1
3z2 − 2z = 1.

• If you need to find the residue of f(z)/zn, or more generally f(z)/(z − z0)n,
and you know how to compute the power series expansion of f(z) centered at
z0, you can use this information to compute residues. For example, let n be
a positive integer. Then ez/zn has a pole of order n at z = 0, and we have an
expansion

ez

zn
=

1

zn
+

1

z(n− 1)
+

1

2!zn−2
+ . . .+

1

(n− 1)!z
+ . . . ,

where the rest of the terms correspond to an entire function. From this we
can directly read off the residue of 1/(n− 1)! for the pole z = 0.

In practice, poles frequently arise by dividing holomorphic functions by other holo-
morphic functions, and looking at points where the denominator has a zero of higher
order than the numerator. However, there are examples of functions which cannot
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obviously be written as the quotient of holomorphic functions yet still have poles; for
example, the Riemann zeta function ζ(s) is such an example; Riemann proved this
has a pole of order 1 at s = 1. (Although we know that lims→1+ ζ(s) = ∞, this by
itself does not rule out the possibility that s = 1 is not a pole. More work is required
to check that |ζ(s)| → ∞ as s→ 1, in any direction.)

4. Distinguishing poles from removable singularities

Are there any properties that uniquely characterize removable singularities or
poles? It turns out that the answer is yes.

Theorem 2. (Riemann’s Theorem on Removable Singularities) Suppose z0 is a sin-
gularity of f , and limz→z0(z − z0)f(z) = 0. Then z0 is a removable singularity of
f .

Proof. Define a new function g(z) = (z − z0)f(z) if z 6= z0, and g(z0) = 0. Then
g(z) is continuous at z0 by assumption. Also, g is holomorphic on a punctured disc

centered at z0, so g is also holomorphic at z0. Now let h(z) =
g(z)− g(z0)

z − z0
for z 6= z0,

and g′(z0) otherwise. Then h is holomorphic at z0 and also near z0, and also when
z 6= z0, h(z) = (z − z0)f(z)/(z − z0) = f(z). Therefore h(z) is just f(z) with h(z0)
defined in such a way to make f(z) holomorphic at z0, so z0 is a removable singularity
of z0. �

Corollary 1. z0 is a removable singularity of f if and only if f is bounded on some
punctured disc centered at z0.

Proof. If z0 is a removable singularity, then defining f(z0) appropriately, we find that
f is continuous at z0, so on a sufficiently small punctured disc f will be bounded.

Conversely, if f is bounded as z → z0, apply the previous theorem to see that z0
is a removable singularity. �

In contrast to removable singularities, a pole z0 is characterized by f(z) → ∞ as
z → z0. As a matter of fact, some sources take this as the definition of a pole (versus
our definition of a pole as a point z0 where 1/f has a zero of some order.)

Theorem 3. If z0 is a pole of f , then |f(z)| → ∞ as z →∞.

Proof. By a previous theorem, we know that near z0, we can write f(z) = (z −
z0)
−nh(z), for some holomorphic function h (recall h is holomorphic on not just some

punctured disc centered at z0, but an actual disc centered at z0). Since h is bounded
at and near z0, limz→z0 |f(z)| = limz→z0 |(z − z0)−nh(z)| =∞. �

As a matter of fact, our theorem on the local structure of functions near poles tells
us that near a pole, a holomorphic function tends to infinity as an integer power of
z − z0, because if n is the order of a pole z0 for f , then

lim
z→z0

(z − z0)nf(z) = lim
z→z0

h(z) = h(z0) 6= 0.

Examples.
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• Suppose you are told that f(z) is a holomorphic function on C − 0 satis-
fying |f(z)| ≤ |z|−1/2 for all nonzero z (or all nonzero z close to 0). Then
limz→0 zf(z) = 0, since |zf(z)| ≤ |z|1/2, which tends to 0 as |z| → 0. By
Riemann’s principle of removable singularities, this implies that f(z) actually
has a removable discontinuity at 0, so is actually bounded near 0.
• As a matter of fact, this shows (via a roundabout way) that it is impossible

to define a holomorphic extension of f(x) =
√
x from the positive real line to

all of C; if this were possible, then 1/
√
z would be holomorphic on C− 0 and

would satisfy |f(z)| ≤ |z|−1/2, implying that 1/
√
z has a removable singularity

at 0. But this is impossible, since |
√
z| should approach 0 as z → 0, so that

|1/
√
z| → ∞ as z → 0, a contradiction.

So, in summary, we see that removable singularities of f are characterized by f
being bounded near that singularity, while poles of f are characterized by |f | tending
to infinity near that pole. Any singularity which does not fall under either of these
two possibilities is called an essential singularity. In many respects, these are the
hardest singularities to understand.

Example. f(z) = e1/z has z = 0 as an essential singularity. Indeed, a homework
assignment showed that f(z) is not bounded near 0, nor is |f(z)| approaching infinity
as z → 0. On the contrary, we saw that e1/z takes every nonzero value infinitely often
in any punctured disc (no matter how small) centered at 0!

The following theorem gives partial information on the values that a general holo-
morphic function takes near an essential singularity.

Theorem 4 (Casorati-Weierstrass). Suppose z0 is an essential singularity of f . Let
D−{z0} be any punctured disc centered at z0 contained in the domain of f . Then the
image of this punctured disc under f is dense in the complex plane. (In other words,
given any ε > 0 and w ∈ C, there exists some z ∈ D−{z0} such that |f(z)−w| < ε.)

Proof. We prove the theorem by contradiction. Suppose that there existed w ∈ C
and some ε > 0 such that |f(z)−w| > ε for all z ∈ D− {z0}. Consider the function
g(z) = 1/(f(z)−w); since f(z) 6= w on D−{z0} this function is holomorphic on this
disc. Also, because |f(z)−w| > ε, this means that g(z) < 1/ε on all of D−{z0}. By
the previous corollary on removable singularities, this implies that z0 is a removable
singularity of g(z). Define g(z0) appropriately to make g(z) holomorphic at z0.

There are two possibilities: if g(z0) 6= 0, then

lim
z→z0

1

f(z)− w
= g(z0)⇒ lim

z→z0
f(z) = w +

1

g(z0)
,

contradicting the hypothesis that z0 was an essential singularity (hence not remov-
able) of f .

The other possibility is that g(z0) = 0. But then this means that limz→z0) g(z) = 0,
or, in other words, limz→z0 |f(z)−w| =∞, which implies that z0 is a pole of f , again
contradicting our assumption. �

Actually, this theorem does not tell the whole truth about essential singularities.
Something much stronger is true:
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Theorem 5 (Picard’s Big Theorem). Suppose z0 is an essential singularity of f . If
D−{z0} is any punctured disc centered at z0 contained in the domain of f , then the
image of this punctured disc under f is all of C except possibly one point. Further-
more, each value in the image is achieved infinitely often.

We do not provide the proof here, as it requires slightly more advanced techniques.
In any case, notice that Picard’s (Big) Theorem says that the phenomenon we ob-
served with e1/z is true for any function with an essential singularity.
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