Exponential and Logarithm Functions

Recall:

$$a^n = \underline{a \cdot a \cdot \ldots \cdot a},$$

 $a^r = \frac{a^m}{a^n} \text{ if } r = \frac{m}{n}.$

Laws of Exponents

$$a^{0} = 1$$
 $a^{x+y} = a^{x}a^{y},$
 $a^{-x} = \frac{1}{a^{x}}$ $a^{x-y} = \frac{a^{x}}{a^{y}},$
 $(a^{x})^{y} = a^{xy}$ $(ab)^{x} = a^{x}b^{x}.$

Definition 1. Let a be a positive real number. Then $P(x) = Ba^x$ is called a general exponential function.

The general logarithm function

• The inverse of the general exponential function a^x , written as $\log_a x$, is called the *general logarithm function*. It is defined by the relations:

$$y = a^x \Leftrightarrow x = \log_a y.$$

Graph of $\log x$

5

Laws of logarithms

$$\log_a 1 = 0 \qquad \log_a xy = \log_a x + \log_a y,$$

$$\log_a \frac{1}{x} = -\log_a x \qquad \log_a \frac{x}{y} = \log_a x - \log_a y,$$

$$\log_a x^y = y \log_a x \qquad \log_a x = \frac{\log_b x}{\log_b a}.$$

The natural exponential function

Definition 2. The natural exponential function e^x is that exponential function that crosses the y-axis with slope 1. Its inverse $\log_e x$ is called the natural logarithm function and is denoted more simply by $\ln x$.

