Exponential and Logarithm Functions

Recall:

$$
\begin{aligned}
a^{n} & =\underbrace{a \cdot a \cdot \ldots \cdot a} \\
a^{r} & =\frac{a^{m}}{a^{n}} \text { if } r=\frac{m}{n}
\end{aligned}
$$

Laws of Exponents

$$
\begin{aligned}
a^{0} & =1 \quad a^{x+y}=a^{x} a^{y} \\
a^{-x} & =\frac{1}{a^{x}} \quad a^{x-y}=\frac{a^{x}}{a^{y}} \\
\left(a^{x}\right)^{y} & =a^{x y} \quad(a b)^{x}=a^{x} b^{x}
\end{aligned}
$$

Definition 1. Let a be a positive real number. Then $P(x)=B a^{x}$ is called a general exponential function.

The general logarithm function

- The inverse of the general exponential function a^{x}, written as $\log _{a} x$, is called the general logarithm function. It is defined by the relations:

$$
y=a^{x} \Leftrightarrow x=\log _{a} y
$$

Graph of $\log x$

Laws of logarithms

$$
\begin{array}{ll}
\log _{a} 1=0 & \log _{a} x y=\log _{a} x+\log _{a} y \\
\log _{a} \frac{1}{x}=-\log _{a} x & \log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y \\
\log _{a} x^{y}=y \log _{a} x & \log _{a} x=\frac{\log _{b} x}{\log _{b} a}
\end{array}
$$

The natural exponential function

Definition 2. The natural exponential function e^{x} is that exponential function that crosses the y-axis with slope 1. Its inverse $\log _{e} x$ is called the natural logarithm function and is denoted more simply by $\ln x$.

