Arc Length

11/15/2005

- Another illustration of the Riemann Sum modeling method, consider the problem of computing the length of a curve in the plane.
- We will assume that $y=f(x)$ is a continuous function defined on the interval $[a, b]$ and that $f^{\prime}(x)$ exists at every point of the interval.
- How to determine the length of the graph of f from the point $(a, f(a))$ to the point $(b, f(b))$.

Summary of the Riemann Sum Method for Arc Length

- Divide the interval $[a, b]$ into n subintervals of equal length $x=$ $(b-a) / n$. Call the points of the subdivision $a=x_{0} \leq x_{1} \leq$ $x_{2} \leq x_{3} \Delta \Delta \Delta x_{n-1} \leq x_{n}=b$, where $x_{i}=a+i \Delta x$ for each i.
- On each subinterval $\left[x_{i-1}, x_{i}\right]$ connect the points $\left(x_{i-1}, f\left(x_{i-1}\right)\right.$ and $\left(x_{i}, f\left(x_{i}\right)\right.$ on the graph of f with straight lines.
- The length of the straight-line segment connecting the two points is

$$
(\Delta s)^{2}=(\Delta x)^{2}+(\Delta y)^{2}
$$

$$
\begin{gathered}
\Delta s=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
\Delta s=\sqrt{(\Delta x)^{2}\left(1+\frac{(\Delta y)^{2}}{(\Delta x)^{2}}\right)}=\Delta x \sqrt{1+\frac{(\Delta y)^{2}}{(\Delta x)^{2}}}
\end{gathered}
$$

- We can replace Δs by the approximate value

$$
\Delta s \simeq \Delta x \sqrt{1+\left[f^{\prime}\left(x_{i-1}\right)\right]^{2}}
$$

- The sum of the approximate lengths of these line segments provides an approximation to the length of the curve

$$
\sum_{i=1}^{n} \sqrt{1+\left[f^{\prime}\left(x_{i-1}\right)\right]^{2}} \Delta x
$$

- Taking the limit as $x \rightarrow 0$, the above approximation approaches the length of the curve. The limit is

$$
L=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} \sqrt{1+\left[f^{\prime}\left(x_{i-1}\right)\right]^{2}} \Delta x=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

The Arc Formula

- The integral formula to compute the length L of the graph of f between $x=a$ and $x=b$ is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Example

- Find the length of the arc $y=x^{3 / 2}$, from $x=0$ to $x=1$.

Example

- Find the length of the arc $y=x^{3 / 2}$, from $x=0$ to $x=1$.

$$
\begin{aligned}
L & =\int_{0}^{1} \sqrt{1+\left[\frac{3}{2} x^{1 / 2}\right]^{2}} d x \\
& =\int_{0}^{1} \sqrt{1+\left[\frac{9}{4} x\right]} d x
\end{aligned}
$$

- Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $\mathrm{x}=1$ to $\mathrm{x}=2$.
- Find the length of the curve $y=x^{4}+\frac{1}{32 x^{2}}$ from $\mathrm{x}=1$ to $\mathrm{x}=2$.

$$
\begin{aligned}
& y^{\prime}=4 x^{3}-\frac{2}{32 x^{3}}=4 x^{3}-\frac{1}{16 x^{3}} \\
& L=\int_{1}^{2} \sqrt{1+\left[4 x^{3}-\frac{1}{16 x^{3}}\right]^{2}} d x \\
&=\int_{1}^{2} \sqrt{1+16 x^{6}-\frac{8}{16}+\frac{1}{256 x^{6}}} d x \\
&=\int_{1}^{2} \sqrt{\frac{8}{16}+16 x^{6}+\frac{1}{256 x^{6}}} d x \\
&=\int_{1}^{2} \sqrt{\left(4 x^{3}+\frac{1}{16 x^{3}}\right)^{2}} d x \\
&=\int_{1}^{2}\left(4 x^{3}+\frac{1}{16 x^{3}}\right) d x \\
&=\left.\left(x^{4}-\frac{1}{32 x^{2}}\right)\right|_{1} ^{2} \\
&=15+\frac{3}{128}
\end{aligned}
$$

