Trapezoid Rule

$11 / 13 / 2005$

- If we can find an antiderivative for the integrand, then we can evaluate the integral fairly easily.
- When we cannot, we turn to numerical methods.
- The numerical method we will discuss here is called the Trapezoid Rule.

The Area of a Trapezoid

- Area $=h\left(y_{L}+y_{R}\right) / 2$.

Definition

- The n-subinterval trapezoid approximation to $\int_{a}^{b} f(x) d x$ is given by

$$
\begin{aligned}
T_{n} & =\frac{h}{2}\left(y_{0}+2 y_{1}+2 y_{2}+2 y_{3}+\cdots+2 y_{n-1}+y_{n}\right) \\
& =\frac{h}{2}\left(y_{0}+y_{n}+2 \sum_{j=1}^{n-1} y_{j}\right)
\end{aligned}
$$

Example

- Find T_{5} for $\int_{1}^{2} 1 / x d x$.
- $f(x)=1 / x, h=1 / 5($ so $h / 2=1 / 10)$, and $x_{j}=1+j / 5,0 \leq$ $j \leq 5$.

	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$
1	1.2	1.4	1.6	1.8	2

$$
T_{5}=\frac{1}{10}\left(1+\frac{1}{2}+2\left(\frac{5}{6}+\frac{5}{7}+\frac{5}{8}+\frac{5}{9}\right)\right) \approx .0696
$$

- Find T_{5} for $\int_{o}^{1} \sqrt{1-x^{2}} d x$.

$$
T_{5}=\frac{1}{10}\left(1+2 \sum_{j=1}^{4} \sqrt{1-\frac{j^{2}}{15}}\right) \simeq .75926 .
$$

Areas Between Curves

- We know that if f is a continuous nonnegative function on the interval $[a, b]$, then $\int_{a}^{b} f(x) d x$ is the area under the graph of f and above the interval.
- Suppose we are given two continuous functions, $f_{t o p}$ and $g_{b o t t o m}$ defined on the interval $[a, b]$, with $g_{b o t t o m}(x) \leq f_{t o p}(x)$ for all x in the interval.
- How do we find the area bounded by the two functions over that interval?

The Area Between Two Curves

$$
\int_{a}^{b} f_{t o p}(x) d x-\int_{a}^{b} g_{\text {bottom }}(x) d x=\int_{a}^{b}\left(f_{\text {top }}(x)-g_{\text {bottom }}(x)\right) d x
$$

Example

- Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

- Find the area of the region between $y=e^{x}$ and $y=1 /(1+x)$ on the interval $[0,1]$.

- Find the area of the region bounded by $y=x^{2}-2 x$ and $y=$ $4-x^{2}$.
- Find the area of the region bounded by $y=x^{2}-2 x$ and $y=$ $4-x^{2}$.

- Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

- Find the area between $\sin x$ and $\cos x$ on $[0, \pi / 4]$.

Functions of y

- We could just as well consider two functions of y, say, $x=$ $f_{\text {Left }}(y)$ and $x=g_{\text {Right }}(y)$ defined on the interval $[c, d]$.

Area Between the Two Curves

- Find the area under the graph of $y=\ln x$ and above the interval $[1, e]$ on the x-axis.

