Trapezoid Rule

11/13/2005

- If we can find an antiderivative for the integrand, then we can evaluate the integral fairly easily.
- When we cannot, we turn to numerical methods.
- The numerical method we will discuss here is called the *Trapezoid Rule*.

The Area of a Trapezoid

• Area= $h(y_L + y_R)/2$.

Definition

- The n-subinterval trapezoid approximation to $\int_a^b f(x) dx$ is given by

$$T_n = \frac{h}{2} (y_0 + 2y_1 + 2y_2 + 2y_3 + \dots + 2y_{n-1} + y_n)$$
$$= \frac{h}{2} \left(y_0 + y_n + 2\sum_{j=1}^{n-1} y_j \right)$$

Example

- Find T_5 for $\int_1^2 1/x dx$.
- f(x) = 1/x, h = 1/5 (so h/2 = 1/10), and $x_j = 1 + j/5, 0 \le j \le 5$.

1	1/5 1/	5 1/5	1/5	i	1/5
1	1.2	1.4	1.6	1.8	2

$$T_5 = \frac{1}{10} \left(1 + \frac{1}{2} + 2\left(\frac{5}{6} + \frac{5}{7} + \frac{5}{8} + \frac{5}{9}\right) \right) \approx .0696$$

5

• Find T_5 for $\int_o^1 \sqrt{1-x^2} dx$.

$$T_5 = \frac{1}{10} \left(1 + 2\sum_{j=1}^4 \sqrt{1 - \frac{j^2}{15}} \right) \simeq .75926.$$

Areas Between Curves

- We know that if f is a continuous nonnegative function on the interval [a, b], then $\int_a^b f(x) dx$ is the area under the graph of f and above the interval.
- Suppose we are given two continuous functions, f_{top} and g_{bottom} defined on the interval [a, b], with $g_{bottom}(x) \leq f_{top}(x)$ for all x in the interval.
- How do we find the area bounded by the two functions over that interval?

The Area Between Two Curves

$$\int_{a}^{b} f_{top}(x) \, dx - \int_{a}^{b} g_{bottom}(x) \, dx = \int_{a}^{b} \left(f_{top}(x) - g_{bottom}(x) \right) \, dx$$

Example

• Find the area of the region between the graphs of $y = x^2$ and $y = x^3$ for $0 \le x \le 1$.

• Find the area of the region between $y = e^x$ and y = 1/(1 + x) on the interval [0, 1].

• Find the area of the region bounded by $y = x^2 - 2x$ and $y = 4 - x^2$.

• Find the area of the region bounded by $y = x^2 - 2x$ and $y = 4 - x^2$.

• Find the area of the region bounded by the two curves $y = x^3 - 9x$ and $y = 9 - x^2$.

• Find the area between $\sin x$ and $\cos x$ on $[0, \pi/4]$.

Functions of y

• We could just as well consider two functions of y, say, $x = f_{Left}(y)$ and $x = g_{Right}(y)$ defined on the interval [c, d].

Area Between the Two Curves

• Find the area under the graph of $y = \ln x$ and above the interval [1, e] on the x-axis.

