The Definite Integral

11/08/2005

The Area Problem

Assumptions about Areas

1. Area is a nonnegative number.
2. The area of a rectangle is its length times its width.
3. Area is additive. That is, if a region is completely divided into a finite number of non-overlapping subregions, then the area of the region is the sum of the areas of the subregions.

Upper and Lower Sums; the Method of Exhaustion

Suppose we want to use rectangles to approximate the area under the graph of $y=x+1$ on the interval $[0,1]$.

- We will call the sum of the areas of the rectangles in the left picture an Upper Riemann Sum, and the sum of the areas of the rectangles in the right picture a Lower Riemann Sum.
- The Upper Sum $=31 / 20$ and Lower Sum $=29 / 20$.
- The process of increasing the number of rectangles to improve the approximation to the area whose value we seek is reminiscent of the Greek Method of Exhaustion.

n	U	L
100	1.505000000	1.495000000
150	1.503333333	1.496666667
200	1.502500000	1.497500000
300	1.501666667	1.498333333
500	1.501000000	1.499000000

General Procedure for finding the Area Under a Curve and Above an Interval

1. Let $y=f(x)$ be given and defined on an interval $[a, b]$. Subdivide the interval $[a, b]$ into n subintervals. Label the endpoints of the subintervals $a=x_{0} \leq x_{1} \leq x_{2} \leq x_{3} \cdots \leq x_{n}=b$. Define $P=\left\{x_{0}, x_{1}, x_{3}, \ldots, x_{n}\right\}$ to be a partition of $[a, b]$.
2. Let $\Delta x_{i}=x_{i}-x_{i-1}$ be the width of the $i^{t h}$ subinterval, $1 \leq i \leq n$.
3. Form the Upper Riemann Sum $U(P, f)$: the height of each rectangle is the maximum value M_{i} of the function on that $i^{t h}$ subinterval.

$$
U(P, f)=M_{1} \Delta x_{1}+M_{2} \Delta x_{2}+M_{3} \Delta x_{3}+\cdots+M_{n} \Delta x_{n}
$$

4. Form the Lower Riemann Sum $L(P, f)$: the height of each rectangle is the minimum value m_{i} of the function on that $i^{t h}$ subinterval.

$$
L(P, f)=m_{1} \Delta x_{1}+m_{2} \Delta x_{2}+m_{3} \Delta x_{3}+\cdots+m_{n} \Delta x_{n}
$$

5. Take the limit as $n \rightarrow \infty$ and the maximum $\Delta x_{i} \rightarrow 0$.

Sigma Notation

If m and n are integers with $m \leq n$, and if f is a function defined on the integers from m to n, then the symbol $\sum_{i=m}^{n} f(i)$, called sigma notation, is defined to be $f(m)+f(m+1)+f(m+$ $2)+\ldots+f(n)$.

Example

1. $\sum_{i=1}^{n} i=1+2+3+4 \cdots+n$
2. $\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+4^{2} \cdots+n^{2}$
3. $\sum_{i=1}^{n} 1=\underbrace{1+1+1+1 \cdots+1}_{\text {ntimes }}$

The Area Problem Revisited

$$
\begin{aligned}
U(P, f) & =\sum_{i=1}^{n} M_{i} \Delta x_{i} \\
L(P, f) & =\sum_{i=1}^{n} m_{i} \Delta x_{i}
\end{aligned}
$$

where M_{i} and m_{i} are, respectively, the maximum and minimum values of f on the i th subinterval $\left[x_{i-1}, x_{i}\right], 1 \leq i \leq n$.

Riemann Sums

- Given a partition P of $[a, b], P=\left\{a=x_{0}, x_{1}, x_{3}, \ldots, x_{n}=b\right\}$, and $\Delta x_{i}=x_{i}-x_{i-1}$ the width of the i th subinterval, $1 \leq i \leq n$;
- Let f be defined on $[a, b]$.
- Then the Right Riemann Sum is

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i}
$$

and the Left Riemann Sum is

$$
\sum_{i=0}^{n} f\left(x_{i}\right) \Delta x_{i}
$$

The Definite Integral

- Let P be a partition of the interval $[a, b], P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ with $a=x_{0} \leq x 1 \leq x 2 \ldots x_{n}=b$.
- Let $\Delta x_{i}=x_{i}-x_{i+1}$ be the width of the i th subinterval, $1 \leq$ $i \leq n$. Let f be a function defined on $[a, b]$.
- We say that f is Riemann integrable on $[a, b]$ if there exists a number Φ such that $L(P, f) \leq \Phi \leq U(P, f)$ for all partitions of $[a, b]$. We write the number as

$$
\Phi=\int_{a}^{b} f(x) d x
$$

and call it the definite integral of f over $[a, b]$.

Theorem 1: If f is Riemann integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{\substack{n \rightarrow \infty \\\|P\|^{\infty} \rightarrow 0}} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

where c_{i} is any point in the subinterval $\left[x_{i-1}, x_{i}\right]$, and $\|P\|$ is the maximum length of the Δx_{i}.
Theorem. If f is continuous on $[a, b]$, then f is Riemann integrable on $[a, b]$.

Example

Use an Upper Riemann Sum and a Lower Riemann Sum, first with 8 , then with 100 subintervals of equal length to approximate the area under the graph of $y=f(x)=x^{2}$ on the interval $[0,1]$.

Properties of the Definite Integral

- $\int_{a}^{b} f(x) d x=0$.
- If f is integrable and $f(x) \geq 0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x$ equals the area of the region under the graph of f and above the interval $[a, b]$. If $f(x) \leq 0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x$ equals the negative of the area of the region between the interval $[a, b]$ and the graph of f.
- Definition: $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$.

$$
\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x
$$

- If f and g are integrable on $[a, b]$, then

$$
\int_{a}^{b}(A f(x)+B g(x)) d x=A \int_{a}^{b} f(x) d x+B \int_{a}^{b} g(x) d x
$$

for any constants A and B .

- If f is an odd function, then \backslash

$$
\int_{-a}^{a} f(x) d x=0
$$

That is, the definite integral of an odd function over a symmetric interval is zero.

- If f is an even function, then

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

Example

Let the function f be defined piecewise by

$$
f(x)= \begin{cases}x & \text { if } x<0 \\ \sqrt{-x^{2}+2 x} & 0 \leq x \leq 2 \\ x-2 & \text { otherwise }\end{cases}
$$

Mean Value Theorem for Definite Integrals

Theorem. Let f be continuous on the interval $[a, b]$. Then there exists c in $[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=(b-a) f(c)
$$

Definition. The average value of a continuous function on the interval $[a, b]$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

