# Exponential Growth and Decay 

10/31/2005

- Derivatives are functions that measure rates of change.
- A rate of change can be a powerful tool for expressing quantitatively a qualitative description.
- We know that a nation's population grows or declines depending on the birth and death rates.
- Does it make sense to say that at any time $t$, the rate of change of the size of a growing population is proportional to its size?
- Let $y(t)$ be the size of the population at time $t$.

$$
\frac{d y}{d x}=k y ; y(0)=y_{0}
$$

- Note that if $k>0$, then the population is growing, and if $k<0$, then the population is decreasing.

Theorem. The IVP $\frac{d y}{d t}=k y, y(0)=y 0, k$ constant, has unique solution $y=y^{e k t}$.

## Example

Suppose a bacteria culture grows at a rate proportional to the number of cells present. If the culture contains 700 cells initially and 900 after 12 hours, how many will be present after 24 hours?

## Example

Suppose a bacteria culture grows at a rate proportional to the number of cells present. If the culture contains 700 cells initially and 900 after 12 hours, how many will be present after 24 hours?

$$
\begin{aligned}
y(12) & =700 e^{12 k} \\
900 & =700 e^{12 k} \\
\frac{900}{700} & =e^{12 k} \\
\ln \left(\frac{900}{700}\right) & =12 k \\
k & =\frac{\ln 900-\ln 700}{12}
\end{aligned}
$$

## Doubling Time and Half-Life

- In an exponential growth model, the doubling time is the length of time required for the population to double.
- In a decay model, the half-life is the length of time required for the population to be reduced to half its size.
- A characteristic of exponential models is that these numbers are independent of the point in time from which the measurement begins.


## Example

- A radioactive substance that decays according to an exponential model has a half-life of 600 years. What percentage of an original sample is left after 10 years?


## Example

- A radioactive substance that decays according to an exponential model has a half-life of 600 years. What percentage of an original sample is left after 10 years?
- The amount present at time $t$ is given by

$$
y(t)=y_{0} e^{600 k}
$$

## Example

- A radioactive substance that decays according to an exponential model has a half-life of 600 years. What percentage of an original sample is left after 10 years?
- The amount present at time $t$ is given by

$$
y(t)=y_{0} e^{600 k} .
$$

- To find $k$ we use:

$$
\frac{y_{0}}{2}=y^{600 k}
$$

## Newton's Law of Cooling

- This law states that a hot object introduced into an environment maintained at a fixed cooler temperature will cool at a rate proportional to the difference between its own temperature and that of the surrounding environment.
- That is, if $y(t)$ is the temperature of the object $t$ units of time after it is introduced into a medium at fixed temperature $T_{m}$, we have

$$
\frac{d y}{d t}=k\left(y-T_{m}\right) ; y(0)=y_{0}
$$

where $k$ is a constant.

## Example

- Suppose a metal object at 112 degrees Fahrenheit is removed from boiling water and placed on a plate in a room maintained at 68 degrees F.
- Suppose the object cools to 90 degrees in 5 minutes.
- How long will it take to cool to 80 degrees? Note that in this problem, $T_{m}=68$, and $y_{0}=112$.


## Example

- Suppose a metal object at 112 degrees Fahrenheit is removed from boiling water and placed on a plate in a room maintained at 68 degrees $F$.
- Suppose the object cools to 90 degrees in 5 minutes.
- How long will it take to cool to 80 degrees? Note that in this problem, $T_{m}=68$, and $y_{0}=112$.
- The solution is

$$
\begin{aligned}
& y-T_{m}=\left(y_{0}-T_{m}\right) e^{k t} \\
& k=(\ln 22-\ln 44) / 5
\end{aligned}
$$

## Separable Differential Equations

- A first-order differential equation in x and y is called separable if it is of the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

- That is the $x$ 's and $d x$ 's can be put on one side of the equation and the $y$ 's and $d y$ 's on the other

$$
\begin{aligned}
\frac{1}{h(y)} d y & =g(x) d x \\
\int \frac{1}{h(y)} d y & =\int g(x) d x
\end{aligned}
$$

## Example

- As a review, let's again solve the equation

$$
\frac{d y}{d x}=k y
$$

by the method of separation of variables.

## Justification for the Method of Separation of Variables

- We need to show that given the equation

$$
\frac{d y}{d x}=g(x) h(y)
$$

the antiderivative of $\frac{1}{h(y)}$ as a function of $y$ equals the antiderivative of $g(x)$ as a function of $x$.

$$
\begin{aligned}
f^{\prime}(x) & =g(x) h(f(x)) \\
\frac{f^{\prime}(x)}{h(f(x))} & =g(x)
\end{aligned}
$$

- Let $H(y)$ be any antiderivative of $1 / h(y)$

$$
\begin{aligned}
\frac{d}{d x} H(f(x)) & =H^{\prime}(f(x)) f^{\prime}(x) \\
& =f^{\prime}(x) \frac{1}{h(f(x))} \\
& =g(x)
\end{aligned}
$$

- Let $H(y)$ be any antiderivative of $1 / h(y)$

$$
\begin{aligned}
\frac{d}{d x} H(f(x)) & =H^{\prime}(f(x)) f^{\prime}(x) \\
& =f^{\prime}(x) \frac{1}{h(f(x))} \\
& =g(x)
\end{aligned}
$$

- Thus, the solution $y=f(x)$ satisfies the equation

$$
H(f(x))=\int g(x) \mathrm{d} x
$$

## Examples

- Solve the differential equation

$$
\frac{d y}{d x}=\frac{x}{y} .
$$

## Examples

- Solve the differential equation

$$
\frac{d y}{d x}=\frac{x}{y} .
$$

- The solution is

$$
y^{2}-x^{2}=1
$$



- Solve the IVP

$$
\frac{d y}{d x}=x^{2} y^{3} ; y(3)=1 .
$$

- Solve the IVP

$$
\frac{d y}{d x}=x^{2} y^{3} ; y(3)=1 .
$$

- The solution is

$$
-\frac{1}{2 y^{2}}=\frac{x^{3}}{3}+C .
$$



- From $y(3)=1$, we find the particular solution:

$$
\begin{aligned}
C & =-\frac{19}{2} \\
y & =\sqrt{\frac{1}{19-\frac{x^{3}}{3}}}
\end{aligned}
$$



## Example

- Solve

$$
\frac{d y}{d x}=\frac{2 y}{x} .
$$

## Example

- Solve

$$
\frac{d y}{d x}=\frac{2 y}{x} .
$$

- The solution is

$$
y=C_{1} x^{2}
$$



## Example

- Solve

$$
\frac{d y}{d x}=-\frac{x}{2 y} .
$$

## Example

- Solve

$$
\frac{d y}{d x}=-\frac{x}{2 y}
$$

- The solution is

$$
2 y^{2}+x^{2}=C_{1}
$$



## Torricelli's equation

- We found that the equation is of the form

$$
y^{\prime}=k \sqrt{y}
$$

where $k$ is a constant.

## Torricelli's equation

- We found that the equation is of the form

$$
y^{\prime}=k \sqrt{y},
$$

where $k$ is a constant.

- The general form of the solution is

$$
y=\left(\frac{1}{2} k x+C_{1}\right)^{2} .
$$

