Derivatives of Exponential and Logarithm Functions

10/19/2005

The Derivative of $y=e^{x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}
\end{aligned}
$$

The Derivative of $y=e^{x}$..

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

The Derivative of $y=e^{x}$..

$$
\frac{d y}{d x}=e^{x}
$$

The Derivative of $y=e^{x}$..

The Chain Rule

Theorem. Let u be a function of x. Then

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x} .
$$

The Derivative of $y=e^{x}$..

Examples

- $y=e^{17 x}$
- $y=e^{\sin x}$
- $y=e^{\sqrt{x^{2}+1}}$

The Derivative of $y=\ln x$

- We can find the derivative of $y=\ln x$ by implicit differentiation:

$$
\begin{aligned}
y=\ln x & \Leftrightarrow e^{y}=x \\
e^{y} \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{x} .
\end{aligned}
$$

The Chain Rule

Theorem. Let u be a function of x. Then

$$
\frac{d}{d x} \ln |u|=\frac{1}{u} \frac{d u}{d x} .
$$

Examples

- $y=\ln x^{2}$
- $y=\ln \left(\sin \left(x^{2}\right)\right)$

The Calculus Standards: e^{x} and $\ln x$

$$
\begin{aligned}
a^{x} & =e^{x \ln a} \\
\log _{a} x & =\frac{\ln x}{\ln a}
\end{aligned}
$$

Examples

- $y=2^{x}$
- $y=x^{x}$

The Equation $y^{\prime}=k y$

- Suppose y is a function of x and satisfies the equation

$$
y^{\prime}=k y
$$

- If $k=1$, then $y=e^{x}$ has this property and thus solves the equation.
- In fact $y=e^{k x}$ solves the equation for any k.
- The equation $y^{\prime}=k y$ is an example of a differential equation.

