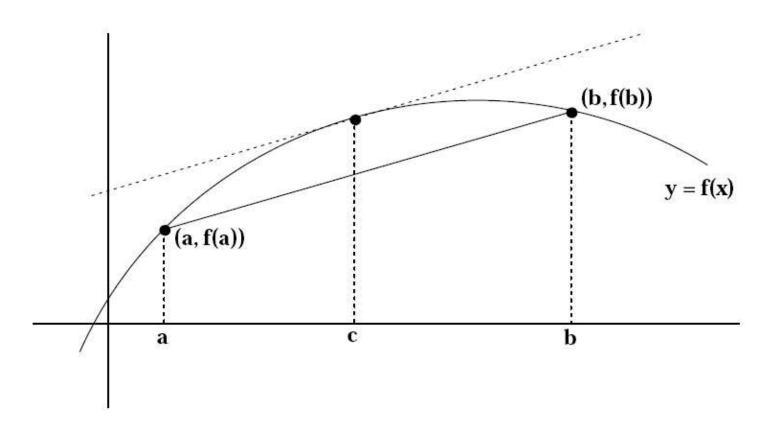
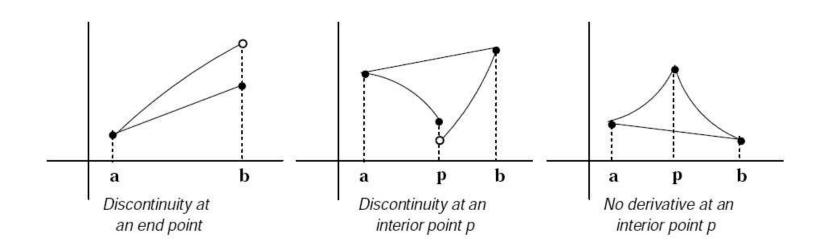
The Mean Value Theorem

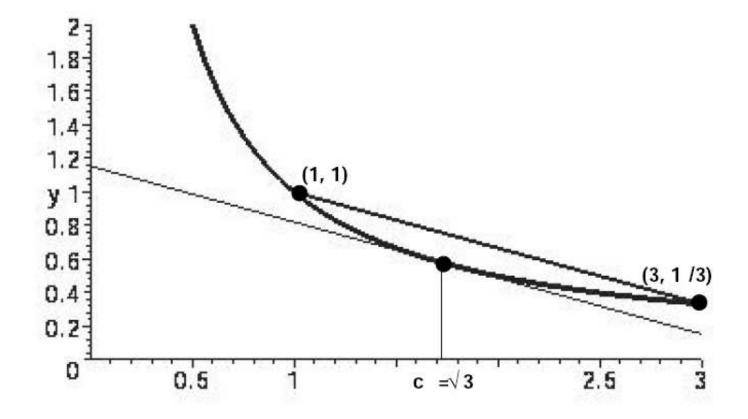

10/17/2005

The Mean Value Theorem

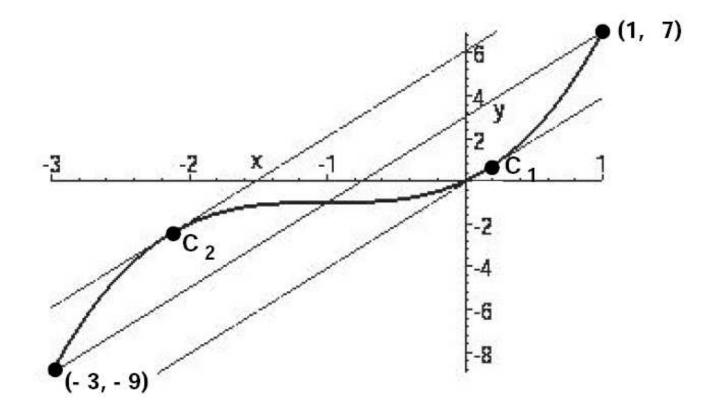
Theorem. Suppose that f is defined and continuous on a closed interval [a, b], and suppose that f' exists on the open interval (a, b). Then there exists a point c in (a, b) such that


$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

The Mean Value Theorem ...


The Mean Value Theorem ...

Examples


- Consider the function f(x) = |x| on [-1, 1].
- The Mean Value Theorem does not apply because the derivative is not defined at x = 0.

• Under what circumstances does the Mean Value Theorem apply to the function f(x) = 1/x?

Examples ...

• Verify the conclusion of the Mean Value Theorem for the function $f(x) = (x+1)^3 - 1$ on the interval [-3, 1].

Recall

• An interval I is the set of real numbers lying between a and b, where a and b are real numbers or $\pm \infty$.

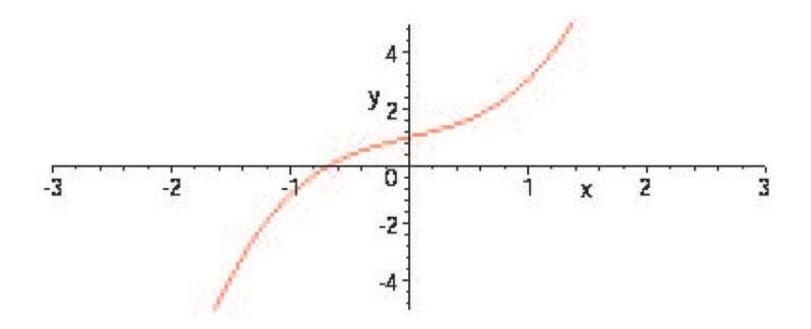
Definition

Suppose that f is defined on an interval I, and let x_1 and x_2 denote points in I:

- 1. f is increasing on I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.
- 2. f is decreasing on I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.
- 3. f is nondecreasing on I if $f(x_1) \leq f(x_2)$ whenever $x_1 < x_2$.
- 4. f is nonincreasing on I if $f(x_1) \ge f(x_2)$ whenever $x_1 < x_2$.

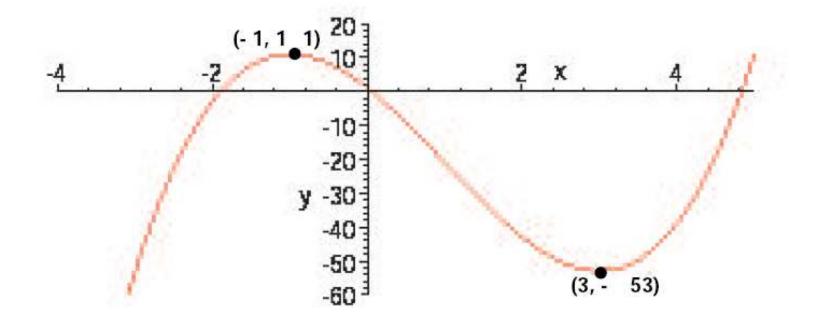
Theorem. Let I be an interval and let J be the open interval consisting of I minus its endpoints (if any). Suppose that f is continuous on I and differentiable on J. Then

1. If f'(x) > 0 for every $x \in J$, then f is increasing on I.


2. If f'(x) < 0 for every $x \in J$, then f is decreasing on I.

3. If $f'(x) \ge 0$ for every $x \in J$, then f is nondecreasing on I.

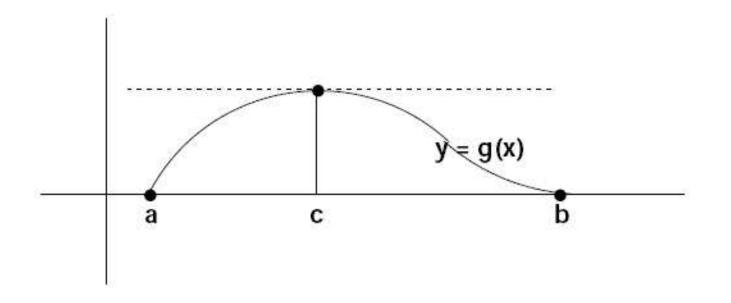

4. If $f'(x) \leq 0$ for every $x \in J$, then f is nonincreasing on I.


Examples

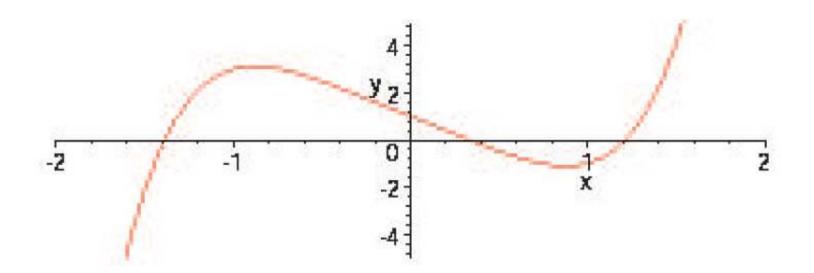
On what interval is the function $f(x) = x^3 + x + 1$ increasing (decreasing)?

Find the intervals on which the function $f(x) = 2x^3 - 6x^2 - 18x + 1$ is increasing and those on which it is decreasing.

Theorem. If f is continuous on a closed interval [a, b], then there is a point c_1 in the interval where f assumes its maximum value, i.e. $f(x) \leq f(c_1)$ for every x in [a, b], and a point c_2 where f assumes its minimum value, i.e. $f(x) \geq f(c_2)$ for every x in [a, b]. **Theorem.** If f is defined in an open interval (a, b) and achieves a maximum (or minimum) value at a point $c \in (a, b)$ where f'(c)exists, then f'(c) = 0.

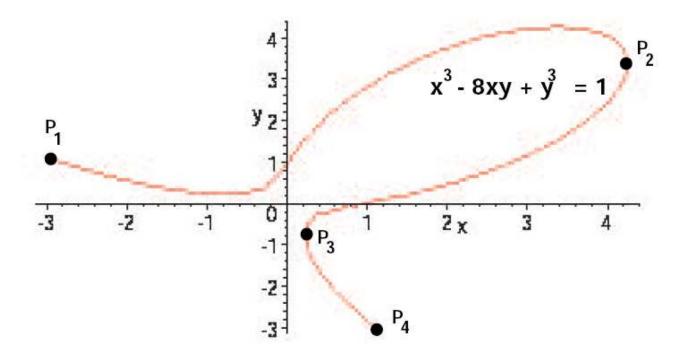

Example

For the function $f(x) = 2x^3 - 6x^2 - 18x + 1$, let us find the points in the interval [-4, 4] where the function assumes its maximum and minimum values.


x	f(x)
-1	11
3	53
-4	-151
4	-39

Rolle's Theorem

Theorem. Suppose that the function g is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If g(a) = 0 and g(b) = 0 then there exists a point c in the open interval (a, b) where g'(c) = 0.


Use Rolle's Theorem to show that the equation $x^5 - 3x + 1 = 0$ has exactly three real roots.

Implicit Differentiation

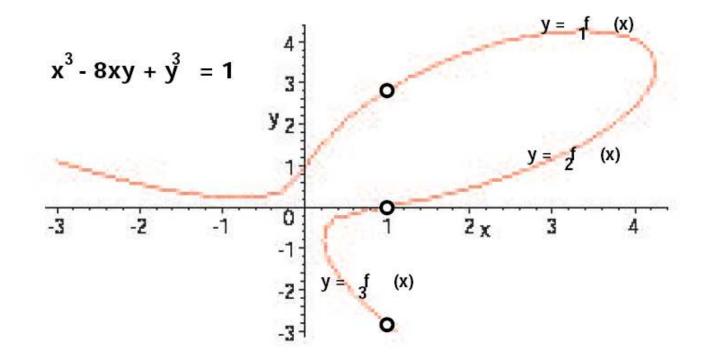
- Many curves are not the graphs of functions.
- A circle of radius 1, for example, does not pass the "vertical line test" and hence is not the graph of a function.
- It is, however, the graph of the equation $x^2 + y^2 = 1$.

- The equation $x^3 8xy + y^3 = 1$ resists our most clever efforts to explicitly solve for y as a function of x.
- We will see how to overcome this difficulty using a very important technique called implicit differentiation.

- The general setting for our discussion of implicitly defined functions is an equation F(x, y) = 0, where F is an expression containing the two variables x and y.
- A function f(x) is said to be implicitly defined by the equation if F(x, f(x)) = 0 on some interval I.
- GOAL: Find the derivative of f(x) without explicitly solving the equation.

Examples

- The functions $\sqrt{1-x^2}$ and $-\sqrt{1-x^2}$ are implicitly defined by the equation $x^2 + y^2 = 1$.
- Consider one of the functions f(x) defined implicitly by the equation x² + y² = 1. Consider one of the functions f(x) defined implicitly by the equation x2 + y2 = 1.


$$f'(x) = -\frac{x}{f(x)}.$$

• Given the equation $x^2 + y^2 = 1$, we think of the functions y = f(x) implicitly defined by the equation.

$$\frac{dy}{dx} = -\frac{x}{y}.$$

• Use implicit differentiation to find the equation of the tangent line to the graph of $xy^2 + x^2y - 6 = 0$ at the point (1, 2).

• Return to the equation $x^3 - 8xy + y^3 = 1$ with which we begin this section. Find the slope at the points on the curve for which x = 1.

• Suppose a differentiable function f has an inverse f^{-1} . Find the derivative of f^{-1} .

$$\frac{dy}{dx} = \frac{1}{f'(y)}$$
$$\left[f^{-1}(x)\right]' = \frac{1}{f'(f^{-1}(x))}$$