Differentiation Rules

10/12/2005

Differentiability is Stronger than Continuity

Theorem. If f'(a) exists, then f is continuous at a.

A function whose derivative exists at every point of an interval is not only continuous, it is *smooth*, i.e. it has no sharp corners.

Theorem. Suppose y = f(x) is a function that has derivative f'. Then, (cf)' = cf', where c is a constant. Or in Leibniz's notation $\frac{d}{dx}(cf(x)) = c\Delta \frac{d}{dx}f(x)$.

Theorem. If f and g are functions with derivatives f' and g0, respectively, then (f + g)' = f' + g'. In words, the derivative of a sum is the sum of the derivatives.

Examples

$$\frac{d}{dx}(3x^2 + 2x + 7)$$
$$\frac{d}{dx}(x + \sqrt{x})$$

The Product Rule

Theorem. If f and g are functions with derivatives f' and g', respectively, then (fg)' = fg' + gf'. In words, "the derivative of a product is the first factor times the derivative of the second, plus the second factor times the derivative of the first".

Examples

- Find f'(x) in two ways, given f(x) = (5x+3)(x+2).
- If $y = \sqrt{x}(x^2 + 2)$, find $\frac{dy}{dx}$.

The Reciprocal of Calculus Modeling

Theorem. Suppose f has derivative f'. Then for any x such that $f(x) \neq 0$, $\left(\frac{1}{f}\right)' = -\frac{f(x)'}{f(x)^2}$. That is, $\left(\frac{1}{f}\right)' = -\frac{f'}{f^2}$.

Example

• Find f'(x) given $f(x) = \frac{1}{x^2+1}$.

The Quotient Rule

Theorem. Suppose f and g have derivatives f' and g', respectively. Then for any x such that $g(x) \neq 0$, $\left(\frac{f}{g}\right)'(x) = \frac{g(x)f(x)'-f(x)g(x)'}{g(x)^2}$. That is, $\left(\frac{f}{g}\right)' = \frac{gf'-fg'}{g^2}$. In words, "the derivative of a quotient is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator all divided by the denominator squared".

Examples

• Find f'(x) given

$$f(x) = \frac{x+1}{x+2}.$$

• Find f'(x) given

$$f(x) = \frac{1 + \sqrt{x}}{x^2 + 3x + 2}.$$

Example

• For $f(x) = \frac{1}{x} = x^{-1}$, find the derivative three ways, using the power rule, the reciprocal rule, and the quotient rule.

The Chain Rule

Theorem. Let $(f \circ g)(x) = f(g(x))$ be the function defined from f and g by composition. Assume that g is differentiable at the point x and that f is differentiable at the point g(x). Then the composite function $f \circ g$ is differentiable at the point x, and

$$(f \circ g)'(x) = [f(g(x))]' = f'(g(x))g'(x)$$

Using Leibniz's notation:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.$$

Building the Toolbox \ldots

Examples

• Differentiate

$$f(x) = \sqrt{x^2 + 1}.$$

• Differentiate

$$y = (x^2 + 2)^{10}.$$

Examples

• Differentiate

$$f(x) = (1 + 3\sqrt{x})^{35}.$$

• Differentiate

$$f(x) = \left(\frac{x+1}{x^2+1}\right)^3.$$