Differentiation Rules

10/12/2005

Differentiability is Stronger than Continuity

Theorem. If $f^{\prime}(a)$ exists, then f is continuous at a.
A function whose derivative exists at every point of an interval is not only continuous, it is smooth, i.e. it has no sharp corners.

Building the Toolbox

Theorem. Suppose $y=f(x)$ is a function that has derivative f^{\prime}. Then, $(c f)^{\prime}=c f^{\prime}$, where c is a constant. Or in Leibniz's notation $\frac{d}{d x}(c f(x))=c \Delta \frac{d}{d x} f(x)$.

Theorem. If f and g are functions with derivatives f^{\prime} and $g 0$, respectively, then $(f+g)^{\prime}=f^{\prime}+g^{\prime}$. In words, the derivative of a sum is the sum of the derivatives.

Examples

$$
\begin{aligned}
& \frac{d}{d x}\left(3 x^{2}+2 x+7\right) \\
& \frac{d}{d x}(x+\sqrt{x})
\end{aligned}
$$

The Product Rule

Theorem. If f and g are functions with derivatives f^{\prime} and g^{\prime}, respectively, then $(f g)^{\prime}=f g^{\prime}+g f^{\prime}$. In words, "the derivative of a product is the first factor times the derivative of the second, plus the second factor times the derivative of the first".

Examples

- Find $f^{\prime}(x)$ in two ways, given $f(x)=(5 x+3)(x+2)$.
- If $y=\sqrt{x}\left(x^{2}+2\right)$, find $\frac{d y}{d x}$.

The Reciprocal of Calculus Modeling

Theorem. Suppose f has derivative f^{\prime}. Then for any x such that $f(x) \neq 0,\left(\frac{1}{f}\right)^{\prime}=-\frac{f(x))^{\prime}}{f(x)^{2}}$. That is, $\left(\frac{1}{f}\right)^{\prime}=-\frac{f^{\prime}}{f^{2}}$.

Example

- Find $f^{\prime}(x)$ given $f(x)=\frac{1}{x^{2}+1}$.

The Quotient Rule

Theorem. Suppose f and g have derivatives f^{\prime} and g^{\prime}, respectively. Then for any x such that $g(x) \neq 0,\left(\frac{f}{g}\right)^{\prime}(x)=$ $\frac{g(x) f(x)^{\prime}-f(x) g(x)^{\prime}}{g(x)^{2}}$. That is, $\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$. In words, "the derivative of a quotient is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator all divided by the denominator squared".

Examples

- Find $f^{\prime}(x)$ given

$$
f(x)=\frac{x+1}{x+2}
$$

- Find $f^{\prime}(x)$ given

$$
f(x)=\frac{1+\sqrt{x}}{x^{2}+3 x+2}
$$

Example

- For $f(x)=\frac{1}{x}=x^{-1}$, find the derivative three ways, using the power rule, the reciprocal rule, and the quotient rule.

The Chain Rule

Theorem. Let $(f \circ g)(x)=f(g(x))$ be the function defined from f and g by composition. Assume that g is differentiable at the point x and that f is differentiable at the point $g(x)$. Then the composite function $f \circ g$ is differentiable at the point x, and

$$
(f \circ g)^{\prime}(x)=[f(g(x))]^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
$$

Using Leibniz's notation:

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Examples

- Differentiate

$$
f(x)=\sqrt{x^{2}+1} .
$$

- Differentiate

$$
y=\left(x^{2}+2\right)^{10}
$$

- Differentiate

$$
f(x)=(1+3 \sqrt{x})^{35} .
$$

- Differentiate

$$
f(x)=\left(\frac{x+1}{x^{2}+1}\right)^{3}
$$

