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1. Let {xn}∞n=1 and {yn}∞n=1 be two sequences of real numbers converging to L1 and L2 respectively.
Use the definition of a converging sequence to show that the sequence {xn + 3yn}∞n=1 converges
to L1 + 3L2. You are not allowed to use any theorems from the course in this problem.



2. Let {xn}∞n=1 be a bounded sequence. Prove or disprove that limn→∞ sup(−xn) = − limn→∞ inf(xn).
You are not allowed to use Theorem 2.21 or similar statements when doing this problem.

Hint as a helpful step you may want to try proving the following Lemma: Given a bounded set
S of real numbers, supS = − inf(−S), where the set −S is defined as −S = {−x|x ∈ S}.



3. Let

h(x) =

{
2x if x ∈ Q
5x if x ∈ R \Q.

Find limx→0 h(x) and prove that this is indeed the limit, or prove that this limit does not exist.



4. Let I be an open interval that contains the point c and let f : I \c→ R be a function. Let m,M
be numbers such that ∀x ∈ I \ c we have m < f(x) < M . Assume moreover that limx→c f(x)
does exist and equals L ∈ R. Prove that m ≤ L ≤M . Give an example (without proof) where
L = M or explain why such example does not exist.



5. Let an and bn be two converging sequences with limits a and b respectively. Assume that
∀n ≥ 17 we have that an ≤ bn. Prove that then a ≤ b or give an example where this is not so.



6. Let S be the set of all possible roots of quadratic equations with integer coefficients. Is S a
countable set? Prove your answer.



7. Prove or disprove the following statements. There is a sequence of rational numbers converging
to
√

3. There is a sequence of irrational numbers converging to 2019.



8. You are given the sequence
sinn

3n
where n ∈ N. Find the limit of the sequence if it converges

or show that the limit does not exist. Prove your answer.


