Math 2
 Midterm Exam 1

Name:

Instructor:

Question Number	Points	Score
1	6	
2	5	
3	7	
4	7	
5	3	
6	3	
7	5	
8	5	
9	5	
10	5	
11	5	
12	5	
13	5	
14	5	
15	5	
16	5	
17	9	
18	5	
19	5	

TOTAL SCORE:

1. Estimate the area under the graph of $f(x)=x^{2}+2$ from $x=0$ to $x=5$ using 5 approximating rectangles and (a) Left Endpoints; (b) Right Endpoints.
2. Find the exact area under the graph of $f(x)=2 x^{3}+4 x^{2}+7 x+6$ from $x=0$ to $x=2$ using the Fundamental Theorem of Calculus.
3. Find the exact area under the graph of $f(x)=x^{2}+x+1$ from $x=0$ to $x=5$ using the limit definition of the definite integral.
4. Use the limit definition of the definite integral to evaluate $\int_{1}^{5} x^{2} d x$.
5. Evaluate the definite integral $\int_{1}^{7}(1+2 f(x)-3 g(x)) d x$ using the fact that $\int_{1}^{7} f(x) d x=9$ and $\int_{1}^{7} g(x) d x=11$.
6. Find the derivative of the function $g(x)=\int_{3}^{x} \sqrt[3]{t^{5}+2} d t$.
7. Find the derivative of the function $g(x)=\int_{3}^{x^{3}} \sqrt[3]{t^{5}+2} d t$.
8. Find the derivative of the function $g(x)=\int_{\arctan (\mathrm{x})}^{1} \tan (t) d t$.
9. Evaluate the definite integral $\int_{-\frac{\pi}{2}}^{\pi}(1+\sin (x)) d x$.
10. Let $F(x)=\frac{1}{\sqrt{1-x^{2}}}$. Evaluate the definite integral $\int_{-\frac{1}{2}}^{\frac{1}{2}} F^{\prime}(x) d x$.
11. Find the indefinite integral $\int\left(\frac{3}{x^{5}}+\frac{2}{\sqrt{x}}\right) d x$.
12. Find the indefinite integral $\int x^{2}\left(x^{3}+1\right)^{2}+x^{2}\left(x^{3}+1\right)^{3} d x$.
13. Let $F(x)=\int 2 \sin (x) d x$. Find the formula for $F(x)$, given that $F\left(\frac{\pi}{2}\right)=2$.
14. Evaluate the integral $\int_{0}^{2}(x-1)^{25} d x$.
15. Evaluate the integral $\int \frac{\sin (x)}{1+\cos ^{2}(x)} d x$.
16. What is wrong with this calculation?

$$
\int_{0}^{\pi} \sec ^{2}(x) d x=\tan (\pi)-\tan (0)=0
$$

17. Determine whether each of the folowing functions $f(x)$ is even/odd/neither, and evaluate the integral $\int_{-1}^{1} f(x) d x$.
(a) $f(x)=x \sin \left(x^{2}\right)$
(b) $f(x)=x^{2} \cos \left(x^{3}\right)$
(c) $f(x)=(x+1)\left(x^{2}+1\right)$
18. Explain exactly what is meant by the statement that "differentiation and integration are inverse processes."
19. State/Describe the substitution rule. Why is it useful in practice? Support your assertion with an example not appearing on this exam.
