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First Order Equations 1/3

General form:
dy

dx
= f(x, y)

f(x, y) = H(x)G(y) =⇒ Separation of variables

Separate variables: move x’s to one side, y’s to the
other

dy

G(y)
=

dx

H(x)

Integrate both sides and solve for y(x).
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First Order Equations 2/3

Integrating factors for first order linear equations

For an equation of the form:

y′(t) + p(t)y(t) = g(t)

Form integrating factor:

µ(t) = e
∫

p(t) dt

Solution:

y(t) =
1

µ(t)

∫
µ(t)g(t) dt
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First Order Equations 3/3

Exact equations
Form:

M(x, y) dx+N(x, y) dy = 0

If My = Nx then we can find solution ψ(x, y) = 0 via
integration:

ψx = M , ψy = N

Integrate both and form the most general ψ(x, y).
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Second Order Equations: Linear homogeneous equations

General case:

p(x)y′′(t) + q(x)y′(t) + r(x)y(t) = 0

General facts:

Superposition: If y1(t) and y2(t) are linearly
independent solutions then the general solution is

C1y1(t) + C2y2(t)

Initial value problem: If we are given two initial
conditions and a fundamental set of solutions
{y1(t), y2(t)} then we can solve the initial value
problem.
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Constant coefficient case

ay′′ + by′ + cy = 0

Guess the solution is of the form y(t) = ert

Auxillary equation: ar2 + br + c = 0

Roots:

r =
−b±

√
b2 − 4ac

2a

Math 23 Review – p.6/??



Constant coefficient case

ay′′ + by′ + cy = 0

Guess the solution is of the form y(t) = ert

Auxillary equation: ar2 + br + c = 0

Roots:

r =
−b±

√
b2 − 4ac

2a

Math 23 Review – p.6/??



Constant coefficient case

ay′′ + by′ + cy = 0

Guess the solution is of the form y(t) = ert

Auxillary equation: ar2 + br + c = 0

Roots:

r =
−b±

√
b2 − 4ac

2a

Math 23 Review – p.6/??



Classification according to roots

If b2 − 4ac > 0 then the solution is of the form

y(t) = C1e
r1t + C2e

r2t

If b2 − 4ac = 0 then the solution is of the form

y(t) = C1e
rt + C2te

rt

If b2 − 4ac < 0 then r = a± ib and the solution is of the
form

y(t) = eat(C1 cos(bt) + C2 sin(bt))
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Reduction of Order

Create an independent solution from an existing solution.

Given a single solution y1(t), guess y2(t) = v(t)y1(t).

Plug in and solve for a differential equation in v(t):

y1v
′′ + (2y′1 + py1)v

′ = 0

Solve this separable equation for v(t)
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Inhomogeneous Equations

Example: forcing terms in spring motion

General form:

p(t)y′′ + q(t)y′ + r(t)y = g(t)

If yp(t) is a particular solution and {y1(t), y2(t)} is a
fundamental set of solutions for the homogeneous
equation then the general solution is

y(t) = C1y1(t) + C2y2(t) + yp(t)
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Finding a particular solution

Method of undetermined coefficiants

Variation of parameter
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Undetermined Coefficiants

Guess a solution of a form similar to the
inhomogeneous term g(t). Solve for the variable
coefficiants.

If g(t) is a polynomial of degree n then guess
yp(t) = A0 + A1t+ · · · + Ant

n.

If g(t) is an exponential, guess a polynomial times an
exponential.

If g(t) is a trigonometric function, guess a trig function.

See table on page 175.
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Variation of Parameters

Given an equation

y′′ + p(t)y′ + q(t)y = g(t)

If y1, y2 are solutions to the homogeneous equation,
then guess yp(t) = u1(t)y1(t) + u2(t)y2(t).

Assume u′1y1 + u′2y2 = 0

Plugging into the equation and simplifying yields a
differential equation:

u′1y
′

1 + u′2y
′

2 = g(t)
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Variation of Parameters

Solving these two equations yields

yp(t) = −y1(t)

∫
y2(t)g(t)

Wr(y1, y2)(t)
dt + y2(t)

∫
y1(t)g(t)

Wr(y1, y2)(t)
dt
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Series solutions to second order equations

General equation:

P (x)y′′ +Q(x)y′ +R(x)y = 0

If x0 is an ordinary point of the equation, then we can find a
solution of the form

y(x) =

∞∑
n=0

an(x− x0)
n
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Series solutions

Method of solution:

Plug series and power series representations for
P,Q,R into the equation

Simplify and reindex, writing the equation as a single
series

Set each coefficiant to zero to find relations between
the {an}
Using the recurrence relation, find the general series
form of the solution.
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First order linear systems

General Form:
~x′ = A~x

where A is a matrix.

Solutions depend on eigenvectors and eigenvalues of the

matrix A
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Systems: Method of solution

Find eigenvalues of A:
Solve: det(A− λI) = 0 for all values of λ

For each eigenvalue λ find its associated eigenvector
- i.e. find ~ξ so that

(A− λI)~ξ = 0

If there are no repeated eignevalues, the solution is
then of the form:

~x = C1
~ξ1e

λ1t + · · · + Cn
~ξne

λnt
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Repeated Eigenvalues

In some cases, we still get a full set of eigenvectors
(i.e. repeated eigenvalueshave multiple eigenvectors)

If not, we solve the augmented eigenvector equation
for ~η:

(A− λI)~η = ~ξ

where λ is the repeated eigenvalue and ~ξ is an
eigenvector for λ.

Then, the piece of the general solution associated to λ
is

~x(t) = ~ηteλt + ~ξeλt
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Qualitative analysis of solutions

If A is a 2x2 matrix then we can draw a phase portrait of

the system and analyze the behavior of solutions qualita-

tively. The portraits can be sketched and classified using

the eigenvalue and eigenvector data from A.
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Classification of 2x2 systems

If the eigenvalues are λ1, λ2 with eigenvectors ξ1, ξw, then

Real distinct eigenvalues

Complex eigenvalues

Repeated eigenvalues
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Real distinct eigenvalues

Same sign:

0 < λ1 < λ2: the line along ξ2 is a node, paths move
away from the node - unstable.

0 > λ1 > λ2: the line along ξ2 is a node, paths move
towards from the node - stable (figure 9.1.1 (a)).

Opposite sign: saddle - unstable, see figure 9.1.2 (a)
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Complex eigenvalues

λ = a± ib

For a 6= 0, these are spiral points

a > 0 - unstable

a < 0 - stable

a = 0 - stable center
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Repeated eigenvalue

λ1 = λ2

λ1 > 0: proper or improper unstable node (e.g. figure
9.1.3 (a))

λ1 < 0: proper or improper stable node (e.g. figure
9.1.4 (a))
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Repeated eigenvalue

λ1 = λ2
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9.1.4 (a))
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Almost linear systems

Systems of the form

~x′ = A~x+ ~g(x)

can be qualitatively classified in terms of the eigneval-

ues/eignevectors of A. See table 9.3.1
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Partial Differential Equations

Three fundamental equations:

The heat equation:

α2uxx = ut

The wave equation:

α2uxx = utt

Laplace’s equation:

uxx + uyy = 0
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Separation of variables

Assume u(x, t) = X(x)T (t)

Plug in and separate variables

Set both sides equal to a constant, yielding two ODEs

Impose boundary conditions to form a two point
boundary value problem
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Two point boundary value problems and Fourier Series

For example:
X ′′ + λX = 0

X(0) = 0, X(L) = 0

Find eigenvalues and eigenfunctions

Superimpose all solutions to form a Fourier series
solution
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Fourier Coefficients

Calculate Fourier coefficients using integral formulae:

an =
1

L

∫ L

−L

f(x) cos(
nπ

L
x) dx

bn =
1

L

∫ L

−L

f(x) sin(
nπ

L
x) dx

Remeber tricks for Fourier sin and cos series
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