Math 23 Review

Scott Pauls

scott.pauls@dartmouth.edu

Department of Mathematics Dartmouth College

First Order Equations 1/3

General form:

$$\frac{dy}{dx} = f(x, y)$$

First Order Equations 1/3

General form:

$$\frac{dy}{dx} = f(x, y)$$

 $f(x,y) = H(x)G(y) \implies$ Separation of variables

First Order Equations 1/3

General form:

$$\frac{dy}{dx} = f(x, y)$$

 $f(x,y) = H(x)G(y) \implies$ Separation of variables

Separate variables: move x's to one side, y's to the other

$$\frac{dy}{G(y)} = \frac{dx}{H(x)}$$

Integrate both sides and solve for y(x).

First Order Equations 2/3

Integrating factors for first order linear equations

• For an equation of the form:

$$y'(t) + p(t)y(t) = g(t)$$

Form integrating factor:

$$\mu(t) = e^{\int p(t) \, dt}$$

Solution:

$$y(t) = \frac{1}{\mu(t)} \int \mu(t)g(t) dt$$

First Order Equations 3/3

Exact equations Form:

$$M(x,y) dx + N(x,y) dy = 0$$

If $M_y = N_x$ then we can find solution $\psi(x, y) = 0$ via integration:

$${} {oldsymbol > } \psi_x = M$$
 , $\psi_y = N$

Integrate both and form the most general $\psi(x, y)$.

Second Order Equations: Linear homogeneous e

General case:

p(x)y''(t) + q(x)y'(t) + r(x)y(t) = 0

Second Order Equations: Linear homogeneous e

General case:

$$p(x)y''(t) + q(x)y'(t) + r(x)y(t) = 0$$

General facts:

Superposition: If $y_1(t)$ and $y_2(t)$ are linearly independent solutions then the general solution is

 $C_1 y_1(t) + C_2 y_2(t)$

Initial value problem: If we are given two initial conditions and a fundamental set of solutions $\{y_1(t), y_2(t)\}$ then we can solve the initial value problem.

Constant coefficient case

$$ay'' + by' + cy = 0$$

• Guess the solution is of the form $y(t) = e^{rt}$

Constant coefficient case

$$ay'' + by' + cy = 0$$

- **Guess the solution is of the form** $y(t) = e^{rt}$
- Auxillary equation: $ar^2 + br + c = 0$

Constant coefficient case

$$ay'' + by' + cy = 0$$

- **Guess the solution is of the form** $y(t) = e^{rt}$
- Auxillary equation: $ar^2 + br + c = 0$
- Roots:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Classification according to roots

If $b^2 - 4ac > 0$ then the solution is of the form

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

Classification according to roots

If $b^2 - 4ac > 0$ then the solution is of the form

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

If $b^2 - 4ac = 0$ then the solution is of the form

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

Classification according to roots

If $b^2 - 4ac > 0$ then the solution is of the form

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

If $b^2 - 4ac = 0$ then the solution is of the form

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

If $b^2 - 4ac < 0$ then $r = a \pm ib$ and the solution is of the form

$$y(t) = e^{at}(C_1\cos(bt) + C_2\sin(bt))$$

Reduction of Order

Create an independent solution from an existing solution.

• Given a single solution $y_1(t)$, guess $y_2(t) = v(t)y_1(t)$.

Reduction of Order

Create an independent solution from an existing solution.

- Given a single solution $y_1(t)$, guess $y_2(t) = v(t)y_1(t)$.
- Plug in and solve for a differential equation in v(t):

$$y_1v'' + (2y_1' + py_1)v' = 0$$

Reduction of Order

Create an independent solution from an existing solution.

- Given a single solution $y_1(t)$, guess $y_2(t) = v(t)y_1(t)$.
- Plug in and solve for a differential equation in v(t):

$$y_1v'' + (2y_1' + py_1)v' = 0$$

Solve this separable equation for v(t)

Inhomogeneous Equations

Example: forcing terms in spring motion

Inhomogeneous Equations

Example: forcing terms in spring motion

General form:

$$p(t)y'' + q(t)y' + r(t)y = g(t)$$

Inhomogeneous Equations

Example: forcing terms in spring motion

General form:

$$p(t)y'' + q(t)y' + r(t)y = g(t)$$

If $y_p(t)$ is a particular solution and $\{y_1(t), y_2(t)\}$ is a fundamental set of solutions for the homogeneous equation then the general solution is

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + y_p(t)$$

Finding a particular solution

Method of undetermined coefficiants

Finding a particular solution

- Method of undetermined coefficiants
- Variation of parameter

Guess a solution of a form similar to the inhomogeneous term g(t). Solve for the variable coefficiants.

- Guess a solution of a form similar to the inhomogeneous term g(t). Solve for the variable coefficiants.
- If g(t) is a polynomial of degree n then guess $y_p(t) = A_0 + A_1t + \cdots + A_nt^n$.

- Guess a solution of a form similar to the inhomogeneous term g(t). Solve for the variable coefficiants.
- If g(t) is a polynomial of degree n then guess $y_p(t) = A_0 + A_1t + \cdots + A_nt^n$.
- If g(t) is an exponential, guess a polynomial times an exponential.

- Guess a solution of a form similar to the inhomogeneous term g(t). Solve for the variable coefficiants.
- If g(t) is a polynomial of degree n then guess $y_p(t) = A_0 + A_1t + \cdots + A_nt^n$.
- If g(t) is an exponential, guess a polynomial times an exponential.
- If g(t) is a trigonometric function, guess a trig function.

- Guess a solution of a form similar to the inhomogeneous term g(t). Solve for the variable coefficiants.
- If g(t) is a polynomial of degree n then guess $y_p(t) = A_0 + A_1t + \cdots + A_nt^n$.
- If g(t) is an exponential, guess a polynomial times an exponential.
- If g(t) is a trigonometric function, guess a trig function.
- See table on page 175.

Given an equation

$$y'' + p(t)y' + q(t)y = g(t)$$

If y_1, y_2 are solutions to the homogeneous equation, then guess $y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$.

Given an equation

$$y'' + p(t)y' + q(t)y = g(t)$$

- If y_1, y_2 are solutions to the homogeneous equation, then guess $y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$.
- **•** Assume $u'_1y_1 + u'_2y_2 = 0$

Given an equation

$$y'' + p(t)y' + q(t)y = g(t)$$

- If y_1, y_2 are solutions to the homogeneous equation, then guess $y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$.
- **•** Assume $u'_1y_1 + u'_2y_2 = 0$
- Plugging into the equation and simplifying yields a differential equation:

$$u_1'y_1' + u_2'y_2' = g(t)$$

Solving these two equations yields

$$y_p(t) = -y_1(t) \int \frac{y_2(t)g(t)}{Wr(y_1, y_2)(t)} dt + y_2(t) \int \frac{y_1(t)g(t)}{Wr(y_1, y_2)(t)} dt$$

Series solutions to second order equations

General equation:

$$P(x)y'' + Q(x)y' + R(x)y = 0$$

If x_0 is an ordinary point of the equation, then we can find a solution of the form

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Method of solution:

Plug series and power series representations for P, Q, R into the equation

Method of solution:

- Plug series and power series representations for P, Q, R into the equation
- Simplify and reindex, writing the equation as a single series

Method of solution:

- Plug series and power series representations for P, Q, R into the equation
- Simplify and reindex, writing the equation as a single series
- Set each coefficiant to zero to find relations between the {a_n}

Method of solution:

- Plug series and power series representations for P, Q, R into the equation
- Simplify and reindex, writing the equation as a single series
- Set each coefficiant to zero to find relations between the {a_n}
- Using the recurrence relation, find the general series form of the solution.

First order linear systems

General Form:

$$\vec{x}' = A\vec{x}$$

where A is a matrix.

Solutions depend on eigenvectors and eigenvalues of the matrix \boldsymbol{A}

Systems: Method of solution

Find eigenvalues of A:
Solve: $det(A - \lambda I) = 0$ for all values of λ

Systems: Method of solution

- Find eigenvalues of A:
 Solve: $det(A \lambda I) = 0$ for all values of λ
- For each eigenvalue λ find its associated eigenvector
 i.e. find $\vec{\xi}$ so that

$$(A - \lambda I)\vec{\xi} = 0$$

Systems: Method of solution

- Find eigenvalues of A:
 Solve: $det(A \lambda I) = 0$ for all values of λ
- For each eigenvalue λ find its associated eigenvector
 i.e. find $\vec{\xi}$ so that

$$(A - \lambda I)\vec{\xi} = 0$$

If there are no repeated eignevalues, the solution is then of the form:

$$\vec{x} = C_1 \vec{\xi_1} e^{\lambda_1 t} + \dots + C_n \vec{\xi_n} e^{\lambda_n t}$$

Repeated Eigenvalues

In some cases, we still get a full set of eigenvectors
 (i.e. repeated eigenvalueshave multiple eigenvectors)

Repeated Eigenvalues

- In some cases, we still get a full set of eigenvectors
 (i.e. repeated eigenvalueshave multiple eigenvectors)
- If not, we solve the *augmented eigenvector equation* for $\vec{\eta}$:

$$(A - \lambda I)\vec{\eta} = \vec{\xi}$$

where λ is the repeated eigenvalue and $\vec{\xi}$ is an eigenvector for λ .

Repeated Eigenvalues

- In some cases, we still get a full set of eigenvectors (i.e. repeated eigenvalueshave multiple eigenvectors)
- If not, we solve the *augmented eigenvector equation* for $\vec{\eta}$:

$$(A - \lambda I)\vec{\eta} = \vec{\xi}$$

where λ is the repeated eigenvalue and $\vec{\xi}$ is an eigenvector for λ .

Then, the piece of the general solution associated to λ is

$$\vec{x}(t) = \vec{\eta} t e^{\lambda t} + \vec{\xi} e^{\lambda t}$$

Qualitative analysis of solutions

If A is a 2x2 matrix then we can draw a phase portrait of the system and analyze the behavior of solutions qualitatively. The portraits can be sketched and classified using the eigenvalue and eigenvector data from A.

Classification of 2x2 systems

If the eigenvalues are λ_1, λ_2 with eigenvectors ξ_1, ξ_w , then

Real distinct eigenvalues

Classification of 2x2 systems

If the eigenvalues are λ_1, λ_2 with eigenvectors ξ_1, ξ_w , then

- Real distinct eigenvalues
- Complex eigenvalues

Classification of 2x2 systems

If the eigenvalues are λ_1, λ_2 with eigenvectors ξ_1, ξ_w , then

- Real distinct eigenvalues
- Complex eigenvalues
- Repeated eigenvalues

Same sign:

Same sign:

■ $0 < \lambda_1 < \lambda_2$: the line along ξ_2 is a node, paths move away from the node - unstable.

Same sign:

- $0 < \lambda_1 < \lambda_2$: the line along ξ_2 is a node, paths move away from the node unstable.
- $0 > \lambda_1 > \lambda_2$: the line along ξ_2 is a node, paths move towards from the node stable (figure 9.1.1 (a)).

Same sign:

- $0 < \lambda_1 < \lambda_2$: the line along ξ_2 is a node, paths move away from the node unstable.
- $0 > \lambda_1 > \lambda_2$: the line along ξ_2 is a node, paths move towards from the node stable (figure 9.1.1 (a)).
- Opposite sign: saddle unstable, see figure 9.1.2 (a)

$$\lambda = a \pm ib$$

• For $a \neq 0$, these are spiral points

$$\lambda = a \pm i b$$

- **•** For $a \neq 0$, these are spiral points
- \bullet a > 0 unstable

$$\lambda = a \pm ib$$

- **•** For $a \neq 0$, these are spiral points
- \bullet a > 0 unstable

$$\bullet$$
 $a < 0$ - stable

$$\lambda = a \pm ib$$

- **.** For $a \neq 0$, these are spiral points
- \bullet a > 0 unstable
- \bullet a < 0 stable
- \bullet a = 0 stable center

Repeated eigenvalue

$$\lambda_1 = \lambda_2$$

λ₁ > 0: proper or improper unstable node (e.g. figure 9.1.3 (a))

Repeated eigenvalue

$$\lambda_1 = \lambda_2$$

- $\lambda_1 > 0$: proper or improper unstable node (e.g. figure 9.1.3 (a))
- $\lambda_1 < 0$: proper or improper stable node (e.g. figure 9.1.4 (a))

Almost linear systems

Systems of the form

$$\vec{x'} = A\vec{x} + g(\vec{x})$$

can be qualitatively classified in terms of the eignevalues/eignevectors of A. See table 9.3.1

Partial Differential Equations

Three fundamental equations:

The heat equation:

$$\alpha^2 u_{xx} = u_t$$

Partial Differential Equations

Three fundamental equations:

The heat equation:

$$\alpha^2 u_{xx} = u_t$$

The wave equation:

$$\alpha^2 u_{xx} = u_{tt}$$

Partial Differential Equations

Three fundamental equations:

The heat equation:

$$\alpha^2 u_{xx} = u_t$$

The wave equation:

$$\alpha^2 u_{xx} = u_{tt}$$

Laplace's equation:

$$u_{xx} + u_{yy} = 0$$

• Assume u(x,t) = X(x)T(t)

- Assume u(x,t) = X(x)T(t)
- Plug in and separate variables

- Solution Assume u(x,t) = X(x)T(t)
- Plug in and separate variables
- Set both sides equal to a constant, yielding two ODEs

- Assume u(x,t) = X(x)T(t)
- Plug in and separate variables
- Set both sides equal to a constant, yielding two ODEs
- Impose boundary conditions to form a two point boundary value problem

Two point boundary value problems and Fourier

For example:

$$X'' + \lambda X = 0$$
$$X(0) = 0, \quad X(L) = 0$$

Two point boundary value problems and Fourier

For example:

$$X'' + \lambda X = 0$$
$$X(0) = 0, \quad X(L) = 0$$

- Find eigenvalues and eigenfunctions
- Superimpose all solutions to form a Fourier series solution

Fourier Coefficients

Calculate Fourier coefficients using integral formulae:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi}{L}x) \, dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi}{L}x) \, dx$$

Fourier Coefficients

Calculate Fourier coefficients using integral formulae:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi}{L}x) \, dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi}{L}x) \, dx$$

Provide and constructions of the second se