Math 23 Review

Scott Pauls
scott.pauls@dartmouth.edu

Department of Mathematics
Dartmouth College

First Order Equations 1/3

- General form:

$$
\frac{d y}{d x}=f(x, y)
$$

First Order Equations 1/3

- General form:

$$
\begin{gathered}
\frac{d y}{d x}=f(x, y) \\
f(x, y)=H(x) G(y) \Longrightarrow \text { Separation of variables }
\end{gathered}
$$

First Order Equations 1/3

- General form:

$$
\frac{d y}{d x}=f(x, y)
$$

$$
f(x, y)=H(x) G(y) \Longrightarrow \text { Separation of variables }
$$

- Separate variables: move x's to one side, y's to the other

$$
\frac{d y}{G(y)}=\frac{d x}{H(x)}
$$

- Integrate both sides and solve for $y(x)$.

First Order Equations 2/3

Integrating factors for first order linear equations

- For an equation of the form:

$$
y^{\prime}(t)+p(t) y(t)=g(t)
$$

- Form integrating factor:

$$
\mu(t)=e^{\int p(t) d t}
$$

- Solution:

$$
y(t)=\frac{1}{\mu(t)} \int \mu(t) g(t) d t
$$

First Order Equations 3/3

Exact equations

Form:

$$
M(x, y) d x+N(x, y) d y=0
$$

- If $M_{y}=N_{x}$ then we can find solution $\psi(x, y)=0$ via integration:
- $\psi_{x}=M, \psi_{y}=N$
- Integrate both and form the most general $\psi(x, y)$.

Second Order Dquations: Linear homogen

General case:

$$
p(x) y^{\prime \prime}(t)+q(x) y^{\prime}(t)+r(x) y(t)=0
$$

General case:

$$
p(x) y^{\prime \prime}(t)+q(x) y^{\prime}(t)+r(x) y(t)=0
$$

General facts:

- Superposition: If $y_{1}(t)$ and $y_{2}(t)$ are linearly independent solutions then the general solution is

$$
C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

- Initial value problem: If we are given two initial conditions and a fundamental set of solutions $\left\{y_{1}(t), y_{2}(t)\right\}$ then we can solve the initial value problem.

Constant coefficient case

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

- Guess the solution is of the form $y(t)=e^{r t}$

Constant coefficient case

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

- Guess the solution is of the form $y(t)=e^{r t}$
- Auxillary equation: $a r^{2}+b r+c=0$

Constant coefficient case

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

- Guess the solution is of the form $y(t)=e^{r t}$
- Auxillary equation: $a r^{2}+b r+c=0$
- Roots:

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Classification according to roots

- If $b^{2}-4 a c>0$ then the solution is of the form

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

Classification according to roots

- If $b^{2}-4 a c>0$ then the solution is of the form

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

- If $b^{2}-4 a c=0$ then the solution is of the form

$$
y(t)=C_{1} e^{r t}+C_{2} t e^{r t}
$$

Classification according to roots

- If $b^{2}-4 a c>0$ then the solution is of the form

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

- If $b^{2}-4 a c=0$ then the solution is of the form

$$
y(t)=C_{1} e^{r t}+C_{2} t e^{r t}
$$

- If $b^{2}-4 a c<0$ then $r=a \pm i b$ and the solution is of the form

$$
y(t)=e^{a t}\left(C_{1} \cos (b t)+C_{2} \sin (b t)\right)
$$

Reduction of Order

Create an independent solution from an existing solution.

- Given a single solution $y_{1}(t)$, guess $y_{2}(t)=v(t) y_{1}(t)$.

Reduction of Order

Create an independent solution from an existing solution.

- Given a single solution $y_{1}(t)$, guess $y_{2}(t)=v(t) y_{1}(t)$.
- Plug in and solve for a differential equation in $v(t)$:

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0
$$

Reduction of Order

Create an independent solution from an existing solution.

- Given a single solution $y_{1}(t)$, guess $y_{2}(t)=v(t) y_{1}(t)$.
- Plug in and solve for a differential equation in $v(t)$:

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0
$$

- Solve this separable equation for $v(t)$

Inhomogeneous Equations

- Example: forcing terms in spring motion

Inhomogeneous Equations

- Example: forcing terms in spring motion
- General form:

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=g(t)
$$

Thhomogeneous Dquations

- Example: forcing terms in spring motion
- General form:

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=g(t)
$$

- If $y_{p}(t)$ is a particular solution and $\left\{y_{1}(t), y_{2}(t)\right\}$ is a fundamental set of solutions for the homogeneous equation then the general solution is

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)+y_{p}(t)
$$

Rinding a particular solution

- Method of undetermined coefficiants

Rinding a particular solution

- Method of undetermined coefficiants
- Variation of parameter

Undetermined Coefficiants

- Guess a solution of a form similar to the inhomogeneous term $g(t)$. Solve for the variable coefficiants.

Undetermined Coefficiants

- Guess a solution of a form similar to the inhomogeneous term $g(t)$. Solve for the variable coefficiants.
- If $g(t)$ is a polynomial of degree n then guess $y_{p}(t)=A_{0}+A_{1} t+\cdots+A_{n} t^{n}$.
- Guess a solution of a form similar to the inhomogeneous term $g(t)$. Solve for the variable coefficiants.
- If $g(t)$ is a polynomial of degree n then guess $y_{p}(t)=A_{0}+A_{1} t+\cdots+A_{n} t^{n}$.
- If $g(t)$ is an exponential, guess a polynomial times an exponential.
- Guess a solution of a form similar to the inhomogeneous term $g(t)$. Solve for the variable coefficiants.
- If $g(t)$ is a polynomial of degree n then guess $y_{p}(t)=A_{0}+A_{1} t+\cdots+A_{n} t^{n}$.
- If $g(t)$ is an exponential, guess a polynomial times an exponential.
- If $g(t)$ is a trigonometric function, guess a trig function.
- Guess a solution of a form similar to the inhomogeneous term $g(t)$. Solve for the variable coefficiants.
- If $g(t)$ is a polynomial of degree n then guess $y_{p}(t)=A_{0}+A_{1} t+\cdots+A_{n} t^{n}$.
- If $g(t)$ is an exponential, guess a polynomial times an exponential.
- If $g(t)$ is a trigonometric function, guess a trig function.
- See table on page 175.

Variation of Parameters

Given an equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

- If y_{1}, y_{2} are solutions to the homogeneous equation, then guess $y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$.

Variation of Parameters

Given an equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

- If y_{1}, y_{2} are solutions to the homogeneous equation, then guess $y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$.
- Assume $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$

Variation of Parameters

Given an equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

- If y_{1}, y_{2} are solutions to the homogeneous equation, then guess $y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$.
- Assume $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$
- Plugging into the equation and simplifying yields a differential equation:

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t)
$$

Variation of Parameters

Solving these two equations yields

$$
y_{p}(t)=-y_{1}(t) \int \frac{y_{2}(t) g(t)}{W r\left(y_{1}, y_{2}\right)(t)} d t+y_{2}(t) \int \frac{y_{1}(t) g(t)}{W r\left(y_{1}, y_{2}\right)(t)} d t
$$

Series solutions General equation:

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

If x_{0} is an ordinary point of the equation, then we can find a solution of the form

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Series solutions

Method of solution:

- Plug series and power series representations for P, Q, R into the equation

Series solutions

Method of solution:

- Plug series and power series representations for P, Q, R into the equation
- Simplify and reindex, writing the equation as a single series

Method of solution:

- Plug series and power series representations for P, Q, R into the equation
- Simplify and reindex, writing the equation as a single series
- Set each coefficiant to zero to find relations between the $\left\{a_{n}\right\}$

Method of solution:

- Plug series and power series representations for P, Q, R into the equation
- Simplify and reindex, writing the equation as a single series
- Set each coefficiant to zero to find relations between the $\left\{a_{n}\right\}$
- Using the recurrence relation, find the general series form of the solution.

First order linear systems

General Form:

$$
\vec{x}^{\prime}=A \vec{x}
$$

where A is a matrix.
Solutions depend on eigenvectors and eigenvalues of the matrix A

Systems: Method of solution

- Find eigenvalues of A :

Solve: $\operatorname{det}(A-\lambda I)=0$ for all values of λ

Systems: Method of solution

- Find eigenvalues of A :

Solve: $\operatorname{det}(A-\lambda I)=0$ for all values of λ

- For each eigenvalue λ find its associated eigenvector
- i.e. find $\vec{\xi}$ so that

$$
(A-\lambda I) \vec{\xi}=0
$$

- Find eigenvalues of A :

Solve: $\operatorname{det}(A-\lambda I)=0$ for all values of λ

- For each eigenvalue λ find its associated eigenvector - i.e. find $\vec{\xi}$ so that

$$
(A-\lambda I) \vec{\xi}=0
$$

- If there are no repeated eignevalues, the solution is then of the form:

$$
\vec{x}=C_{1} \overrightarrow{\xi_{1}} e^{\lambda_{1} t}+\cdots+C_{n} \overrightarrow{\xi_{n}} e^{\lambda_{n} t}
$$

Repeated Digenvalues

- In some cases, we still get a full set of eigenvectors (i.e. repeated eigenvalueshave multiple eigenvectors)

Repeated Digenvalues

- In some cases, we still get a full set of eigenvectors (i.e. repeated eigenvalueshave multiple eigenvectors)
- If not, we solve the augmented eigenvector equation for $\vec{\eta}$:

$$
(A-\lambda I) \vec{\eta}=\vec{\xi}
$$

where λ is the repeated eigenvalue and $\vec{\xi}$ is an eigenvector for λ.

- In some cases, we still get a full set of eigenvectors (i.e. repeated eigenvalueshave multiple eigenvectors)
- If not, we solve the augmented eigenvector equation for $\vec{\eta}$:

$$
(A-\lambda I) \vec{\eta}=\vec{\xi}
$$

where λ is the repeated eigenvalue and $\vec{\xi}$ is an eigenvector for λ.

- Then, the piece of the general solution associated to λ is

$$
\vec{x}(t)=\vec{\eta} t e^{\lambda t}+\vec{\xi} e^{\lambda t}
$$

Qualitative analysis of solutions
If A is a 2×2 matrix then we can draw a phase portrait of the system and analyze the behavior of solutions qualitatively. The portraits can be sketched and classified using the eigenvalue and eigenvector data from A.

Classification of 2×2 systems

If the eigenvalues are λ_{1}, λ_{2} with eigenvectors ξ_{1}, ξ_{w}, then

- Real distinct eigenvalues

Classification of 2×2 systems

If the eigenvalues are λ_{1}, λ_{2} with eigenvectors ξ_{1}, ξ_{w}, then

- Real distinct eigenvalues
- Complex eigenvalues

Classification of 2×2 systems

If the eigenvalues are λ_{1}, λ_{2} with eigenvectors ξ_{1}, ξ_{w}, then

- Real distinct eigenvalues
- Complex eigenvalues
- Repeated eigenvalues

Real distinct eigenvalues

- Same sign:

Real distinct eigenvalues

- Same sign:
- $0<\lambda_{1}<\lambda_{2}$: the line along ξ_{2} is a node, paths move away from the node - unstable.

Real distinct eigenvalues

- Same sign:
- $0<\lambda_{1}<\lambda_{2}$: the line along ξ_{2} is a node, paths move away from the node - unstable.
- $0>\lambda_{1}>\lambda_{2}$: the line along ξ_{2} is a node, paths move towards from the node - stable (figure 9.1.1 (a)).

Real distinct eigenvalues

- Same sign:
- $0<\lambda_{1}<\lambda_{2}$: the line along ξ_{2} is a node, paths move away from the node - unstable.
- $0>\lambda_{1}>\lambda_{2}$: the line along ξ_{2} is a node, paths move towards from the node - stable (figure 9.1.1 (a)).
- Opposite sign: saddle - unstable, see figure 9.1.2 (a)

Complex eigenvalues

$$
\lambda=a \pm i b
$$

- For $a \neq 0$, these are spiral points

Complex eigenvalues

$$
\lambda=a \pm i b
$$

- For $a \neq 0$, these are spiral points
- $a>0$ - unstable

Complex eigenvalues

$$
\lambda=a \pm i b
$$

- For $a \neq 0$, these are spiral points
- $a>0$ - unstable
- $a<0$ - stable

Complex eigenvalues

$$
\lambda=a \pm i b
$$

- For $a \neq 0$, these are spiral points
- $a>0$ - unstable
- $a<0$ - stable
- $a=0$ - stable center

Repeated eigenvalue

$$
\lambda_{1}=\lambda_{2}
$$

- $\lambda_{1}>0$: proper or improper unstable node (e.g. figure 9.1.3 (a))

Repeated eigenvalue

$$
\lambda_{1}=\lambda_{2}
$$

- $\lambda_{1}>0$: proper or improper unstable node (e.g. figure 9.1.3 (a))
- $\lambda_{1}<0$: proper or improper stable node (e.g. figure 9.1.4 (a))

Almost linear systems

Systems of the form

$$
\vec{x}^{\prime}=A \vec{x}+g(\vec{x})
$$

can be qualitatively classified in terms of the eignevalues/eignevectors of A. See table 9.3.1

Partial Difierential Equations

Three fundamental equations:

- The heat equation:

$$
\alpha^{2} u_{x x}=u_{t}
$$

Partial Difierential Equations

Three fundamental equations:

- The heat equation:

$$
\alpha^{2} u_{x x}=u_{t}
$$

- The wave equation:

$$
\alpha^{2} u_{x x}=u_{t t}
$$

Partial Difierential Equations

Three fundamental equations:

- The heat equation:

$$
\alpha^{2} u_{x x}=u_{t}
$$

- The wave equation:

$$
\alpha^{2} u_{x x}=u_{t t}
$$

- Laplace's equation:

$$
u_{x x}+u_{y y}=0
$$

Separation of variables

- Assume $u(x, t)=X(x) T(t)$

Separation of variables

- Assume $u(x, t)=X(x) T(t)$
- Plug in and separate variables

Separation of variables

- Assume $u(x, t)=X(x) T(t)$
- Plug in and separate variables
- Set both sides equal to a constant, yielding two ODEs
- Assume $u(x, t)=X(x) T(t)$
- Plug in and separate variables
- Set both sides equal to a constant, yielding two ODEs
- Impose boundary conditions to form a two point boundary value problem

Two point boundary value problems and

For example:

$$
\begin{gathered}
X^{\prime \prime}+\lambda X=0 \\
X(0)=0, \quad X(L)=0
\end{gathered}
$$

- Find eigenvalues and eigenfunctions

$$
\begin{gathered}
X^{\prime \prime}+\lambda X=0 \\
X(0)=0, \quad X(L)=0
\end{gathered}
$$

- Find eigenvalues and eigenfunctions
- Superimpose all solutions to form a Fourier series solution

Fourier Coefficients

- Calculate Fourier coefficients using integral formulae:

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
\end{aligned}
$$

Fourier Coefficients

- Calculate Fourier coefficients using integral formulae:

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
\end{aligned}
$$

- Remeber tricks for Fourier sin and cos series

