Math 22: Exam 2

October 30, 2012, 6pm-8pm

Your name (please print): \qquad

Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted. Unless otherwise stated, you must justify all of your answers to receive credit - please write in complete sentences in a paragraph structure. You may not give or receive any help on this exam and all questions should be directed to Professor Pauls.

You have $\mathbf{2}$ hours to work on all $\mathbf{8}$ problems. Please do all your work in this exam booklet.

The Honor Principle requires that you neither give nor receive any aid on this exam.

Problem	Points	Score
1	10	
2	15	
3	12	
4	10	
5	10	
6	15	
7	13	
8	15	
Total	$\mathbf{1 0 0}$	

(1) (10 points, 5 each) Let A be an $n \times m$ matrix.
(a) Define the null space, the column space and the row space of A.
(b) Identify the vector space of which Row A is a subset. Show that Row A is a subspace of that vector space.
(2) (15 points) Which of the following matrices are invertible? For the 2×2 matrices, if they are invertible, find their inverses. In each case justify your answer!

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 1 \\
-2 & 1 & 0 \\
4 & -2 & 7
\end{array}\right),\left(\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right)
$$

(3) (20 points total) The matrix A given by

$$
\left(\begin{array}{cccc}
1 & -4 & 9 & -7 \\
-1 & 2 & -4 & 1 \\
5 & -6 & 10 & 7
\end{array}\right)
$$

has reduced echelon form given by

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 5 \\
0 & -2 & 5 & -6 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(a) (2 points) Find a basis, \mathfrak{B}, for Row A.
(b) (3 points) If we label your basis from part a) as $\mathfrak{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{k}\right\}$, is $\left\{A \vec{b}_{1}, \ldots, A \vec{b}_{k}\right\}$ a basis for Col A? Justify your answer!
(c) (3 points) Find a basis, \mathfrak{N}, for $N u l A$.
(d) (3 points) Show that the union of the vectors in \mathfrak{N} and \mathfrak{B} is a basis for \mathbb{R}^{4}.
(e) (1 points) Give a change of basis matrix from the standard basis to the basis in the previous part (if the answer is the inverse of a matrix, you need not compute the inverse).
(4) (10 points total) Consider the matrix A given by

$$
\left(\begin{array}{ccc}
4 & 2 & 3 \\
-1 & 1 & -3 \\
2 & 4 & 9
\end{array}\right)
$$

A has a double eigenvalue of 3 .
(a) (5 points) Find all of the eigenvectors associated with the eigenvalue 3.
(b) (5 points) Is A diagonalizable? If not, why? If so, show the diagonalization.
(5) (10 points total) Let A be

$$
\left(\begin{array}{ccc}
2 & -2 & 2 \\
-6 & 0 & -2 \\
8 & -1 & 5
\end{array}\right)
$$

and

$$
\vec{b}=\left(\begin{array}{l}
1 \\
0 \\
4
\end{array}\right)
$$

Solve $A \vec{x}=\vec{b}$ using the LU factorization for A given by

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
4 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 2 \\
0 & -3 & 4 \\
0 & 0 & 1
\end{array}\right)
$$

(6) (15 points total) Let P be a regular Markov chain given by

$$
\left(\begin{array}{ll}
0.6 & 0.5 \\
0.4 & 0.5
\end{array}\right)
$$

(a) (5 points) Find all the eigenvalues and associated eigenvectors of P.
(b) (10 points) What does $P^{k} \vec{x}$ converge to as k approaches infinity? Justify your answer completely!
(7) (13 points total) Consider the linear transformation $T: P_{2} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(a_{0}+a_{1}, 3 a_{1}+2 a_{2}, 4 a_{2}\right)
$$

(a) (4 points) Using the basis $\mathfrak{B}=\left\{1, x, x^{2}\right\}$ for P_{2} and the standard basis \mathscr{E} for \mathbb{R}^{3}, give a matrix representation, A, for T with respect to these two bases.
(b) (2 points) What is the rank of T ? Justify your answer!
(c) (5 points) Find the eigenvalues and eigenvectors of A. If possible, give a diagonalization of A.
(d) (2 points) Is A invertible? Justify your answer.
(8) (15 points total)
(a) (5 points) Show that if A and B are similar matrices then $\operatorname{det} A=\operatorname{det} B$.
(b) (5 points) Show that similar matrices have the same eigenvalues.
(c) (5 points) Explain why an $n \times n$ matrix can have at most n distinct eigenvalues.

This page is for additional work.

This page is for additional work.

This page is for additional work.

