
Math 22: Exam 2
October 30, 2012, 6pm-8pm

Your name (please print):

Instructions: This is a closed book, closed notes exam. Use of calculators is not
permitted. Unless otherwise stated, you must justify all of your answers to receive credit
- please write in complete sentences in a paragraph structure. You may not give or receive
any help on this exam and all questions should be directed to Professor Pauls.

You have 2 hours to work on all 8 problems. Please do all your work in this exam booklet.

The Honor Principle requires that you neither give nor receive any aid on this
exam.
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Problem Points Score
1 10
2 15
3 12
4 10
5 10
6 15
7 13
8 15

Total 100
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(1) (10 points, 5 each) Let A be an n×m matrix.
(a) Define the null space, the column space and the row space of A.

3



(b) Identify the vector space of which Row A is a subset. Show that Row A is a
subspace of that vector space.
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(2) (15 points) Which of the following matrices are invertible? For the 2× 2 matrices, if
they are invertible, find their inverses. In each case justify your answer!(

1 2
3 4

)
,

 0 0 1
−2 1 0
4 −2 7

 ,

(
1 3
2 6

)
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(3) (20 points total) The matrix A given by 1 −4 9 −7
−1 2 −4 1
5 −6 10 7


has reduced echelon form given by1 0 −1 5

0 −2 5 −6
0 0 0 0


(a) (2 points) Find a basis, B, for Row A.
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(b) (3 points) If we label your basis from part a) as B = {~b1, . . . ,~bk}, is {A~b1, . . . , A~bk}
a basis for Col A? Justify your answer!
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(c) (3 points) Find a basis, N, for Nul A.
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(d) (3 points) Show that the union of the vectors in N and B is a basis for R4.
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(e) (1 points) Give a change of basis matrix from the standard basis to the basis in
the previous part (if the answer is the inverse of a matrix, you need not compute
the inverse).
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(4) (10 points total) Consider the matrix A given by 4 2 3
−1 1 −3
2 4 9


A has a double eigenvalue of 3.
(a) (5 points) Find all of the eigenvectors associated with the eigenvalue 3.
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(b) (5 points) Is A diagonalizable? If not, why? If so, show the diagonalization.
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(5) (10 points total) Let A be  2 −2 2
−6 0 −2
8 −1 5


and

~b =

1
0
4

 .

Solve A~x = ~b using the LU factorization for A given by 1 0 0
−2 1 0
4 −1 1

2 −1 2
0 −3 4
0 0 1
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(6) (15 points total) Let P be a regular Markov chain given by(
0.6 0.5
0.4 0.5

)
(a) (5 points) Find all the eigenvalues and associated eigenvectors of P .
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(b) (10 points) What does P k~x converge to as k approaches infinity? Justify your
answer completely!
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(7) (13 points total) Consider the linear transformation T : P2 → R3 given by

T (a0 + a1x + a2x
2) = (a0 + a1, 3a1 + 2a2, 4a2)

(a) (4 points) Using the basis B = {1, x, x2} for P2 and the standard basis E for
R3, give a matrix representation, A, for T with respect to these two bases.
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(b) (2 points) What is the rank of T? Justify your answer!
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(c) (5 points) Find the eigenvalues and eigenvectors of A. If possible, give a diago-
nalization of A.
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(d) (2 points) Is A invertible? Justify your answer.
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(8) (15 points total)
(a) (5 points) Show that if A and B are similar matrices then det A = det B.
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(b) (5 points) Show that similar matrices have the same eigenvalues.
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(c) (5 points) Explain why an n×n matrix can have at most n distinct eigenvalues.
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This page is for additional work.
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This page is for additional work.
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