Math 23: Linear Algebra In-Class Problem Due Wednesday, May 29

This problem refers to the Hom vector spaces of the last long homework. We're going to look in detail at $\operatorname{Hom}(V, \mathbb{R})$. This vector space occurs very often in lots of situations, including geometry and physics. It is called the dual vector space to V, and usually denoted V^{*}. In other words,

$$
V^{*}=\operatorname{Hom}(V, \mathbb{R})
$$

We'll want to get a basis for V^{*}. For this, we need a basis for \mathbb{R} and a basis for V. We'll use the standard basis $\left\{\mathbf{e}_{1}\right\}$ for \mathbb{R}, and let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for V. You showed in Long Homework 2 that the collection $\left\{T_{11}, T_{21}, \ldots, T_{n 1}\right\}$ is a basis for V^{*}. For simplicity, these linear transformations are usually denoted $\mathcal{B}^{*}=\left\{\mathbf{b}_{1}^{*}, \mathbf{b}_{2}^{*}, \ldots, \mathbf{b}_{n}^{*}\right\}$

Here are some questions just to get your mind working, what is $\mathbf{b}_{i}^{*}\left(\mathbf{b}_{j}\right)$? If V is 5 -dimensional, then what is the dimension of V^{*} ? Are V and V^{*} isomorphic?

You also showed in Long Homework 2 that if you have a linear transformation $T: U \longrightarrow V$, then it induces a linear transformation

$$
T^{*}: V^{*} \longrightarrow U^{*} \quad \text { given by the formula } T^{*}(S)=S \circ T .
$$

Let's give U a basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{m}\right\}$ (so $\mathcal{C}^{*}=\left\{\mathbf{c}_{1}^{*}, \mathbf{c}_{2}^{*}, \ldots, \mathbf{c}_{m}^{*}\right\}$ is a basis for for $\left.U^{*}\right)$. Then we can find a matrix for T with respect to the bases \mathcal{B} and \mathcal{C}, in the usual way. More explicitly, we construct a diagram

and we can get a matrix A for the linear transformation $T_{\mathcal{B}, \mathcal{C}}$.
Your Task Determine the matrix, relative to the bases \mathcal{B}^{*} and \mathcal{C}^{*} for the linear transformation $T^{*}: V^{*} \longrightarrow U^{*}$. For simplicity, you may restrict your attention to linear transformations $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$, using the standard bases.

