Let $S=\{(0,1),(0,2),(1,2),(1,3),(2,0),(4,1)\} \in \mathbb{R}^{2}$.
(1) Draw conv (S).
(2) Is $\operatorname{conv}(S)$ a polyhedron?
(3) Is it true that $(3,2) \in \operatorname{conv}(S)$?
(4) Is it true that $(2,2) \in \operatorname{conv}(S)$?
(5) If you answered yes to any of the last two questions, prove it using the definition of $\operatorname{conv}(S)$ (that is, express the point as a convex combination of points in S).

