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LECTURE OUTLINE
Changing Viewpoints
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Today

Projection
Orthonormal Basis
Changing Coordinates
Polar Coordinate Differentiation
Curvature



Orthogonal

We call two non zero vectors v and w orthogonal
provided

—

v-w = 0.

Three unit vectors {é4, é;, é3} are called an
orthonormal basis Of three dimensional space
provided they are pair-wise orthogonal. Similarly
for 2 dimensions.



Projection and ONB

The projection of ¥ onto w is the perpendicular
shadow of v on a line in the direction of w. As a
formula, the projection of v onto w Is

U] cos(0)w = (V- w)w

where 6 is the angle between v and w.



Vectors in an ONB

We can write a vector in an ONB via

U = (?7'@1)61 + (?7'@2)62+ (U'



Ellipse Part 1

Find a curve such that the ratio of the distance to
the origin and a fixed line of distance d from the
origin is constant (We call this ratio the eccentric-
ity, denote it as e, and assume 0 < e < 1) parame-
terized so that from the origin’s view we sweep out
equal angle in equal time. Answer (1+€i‘f)8(t),t)p.
Find the velocity of this point in cartesian coordi-
nates and in polar coordinates.




The Product and Chain Rules

Product Rule
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Derivatives in Polar Coordinates
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