LECTURE OUTLINE Changing Viewpoints

Professor Leibon

Math 15
Sep 29, 2004

Today

Projection

Orthonormal Basis

Changing Coordinates

Polar Coordinate Differentiation

Curvature

Orthogonal

We call two non zero vectors \vec{v} and \vec{w} orthogonal provided

$$
\vec{v} \cdot \vec{w}=0 .
$$

Three unit vectors $\left\{\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}\right\}$ are called an orthonormal basis of three dimensional space provided they are pair-wise orthogonal. Similarly for 2 dimensions.

Projection and ONB

The projection of \vec{v} onto \hat{w} is the perpendicular shadow of \vec{v} on a line in the direction of \hat{w}. As a formula, the projection of \vec{v} onto \hat{w} is

$$
|\vec{v}| \cos (\theta) \hat{w}=(\vec{v} \cdot \hat{w}) \hat{w}
$$

where θ is the angle between \hat{v} and \hat{w}.

Vectors in an ONB

We can write a vector in an ONB via

$$
\vec{v}=\left(\vec{v} \cdot \hat{e}_{1}\right) \hat{e}_{1}+\left(\vec{v} \cdot \hat{e}_{2}\right) \hat{e}_{2}+\left(\vec{v} \cdot \hat{e}_{3}\right) \hat{e}_{3}
$$

Ellipse Part 1

Find a curve such that the ratio of the distance to the origin and a fixed line of distance d from the origin is constant (We call this ratio the eccentricity, denote it as e, and assume $0<e<1$) parameterized so that from the origin's view we sweep out equal angle in equal time. Answer $\left(\frac{e d}{1+e \cos (t)}, t\right)_{P}$. Find the velocity of this point in cartesian coordinates and in polar coordinates.

The Product and Chain Rules

Product Rule

$$
\frac{d}{d t}(f \vec{v})=\frac{d f}{d t} \vec{v}+f \frac{d \vec{v}}{d t}
$$

Chain Rule

$$
\frac{d \vec{v}}{d t}=\frac{d \vec{v}}{d f} \frac{d f}{d t}
$$

Derivatives in Polar Coordinates

$$
\begin{aligned}
\frac{d \hat{r}}{d t} & =\dot{\theta} \hat{\theta} \\
\frac{d \hat{\theta}}{d t} & =-\dot{\theta} \hat{r} \\
\frac{d \vec{r}}{d t} & =\dot{r} \hat{r}+r \dot{\theta} \hat{\theta} \\
\frac{d^{2} \vec{r}}{d t^{2}} & =\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\theta} \\
& =(\ddot{r}+\text { Centrifugal }) \hat{r}+(\text { Coriolis }+r \ddot{\theta})
\end{aligned}
$$

