LECTURE OUTLINE The Dot Product

Professor Leibon

Math 15
Sep 27, 2004

Today

Polar Coordinates

Projection
Dot Product
Orthonormal Basis
Changing Coordinates
Polar Coordinate Differentiation

Cylindrical Coordinates

We define cylindrical coordinates via

$$
(r, \theta, z)_{P}=(r \cos (\theta), r \sin (\theta), z)
$$

We can find a cylindrical coordinate determining (x, y, z) via

$$
(x, y, z)=\left(\sqrt{x^{2}+y^{2}}, \arctan \left(\frac{y}{x}\right), z\right)_{P}
$$

for some arctan. Restricting to $z=0$ we have polar coordinates.

Polar Coordinates: Vectors

When thinking in terms of polar coordinates, we use \hat{r} to describe position

$$
\vec{r}=r \hat{r}(\theta)=r(\cos (\theta) \hat{i}+\sin (\theta) \hat{j})
$$

and use \hat{r} 's perpendicular companion

$$
\hat{\theta}=-\sin (\theta) \hat{i}+\cos (\theta) \hat{j}
$$

to describe vectors at $(r, \theta)_{P}$.

Circular Motion

An object is moving around a circle of radius $1 / 2$ in the x, y-plane (where the units of distance are meters) in a counter clockwise direction at a constant speed of 3 meters per second. Its initial position vector is $(1 / 2) \hat{i}$.
(a) Describe its position after 6 seconds in polar and Cartesian coordinates.
(b) In both Cartesian and polar coordinates, find a vector representing its velocity when it is located at the point with position vector $\left(\frac{1}{4}\right) \hat{i}+\left(\frac{\sqrt{3}}{4}\right) \hat{j}$.

The Angle

Given two unit vectors $\hat{u}_{1}=x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}$ and $\hat{u}_{2}=x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}$ and letting θ be the angle between them we have

$$
\begin{gathered}
\cos (\theta)=1-2 \sin \left(\frac{\theta}{2}\right)^{2}= \\
1-2\left|\frac{\hat{u}_{2}-\hat{u}_{1}}{2}\right|^{2}=\left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right)
\end{gathered}
$$

Dot Product

Hence for any $\vec{v}=x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}$ and
$\vec{w}=x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}$, if we let

$$
\vec{v} \cdot \vec{w}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
$$

then we have

$$
\cos (\theta)=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}
$$

where θ is the angle between \vec{v} and \vec{w}.

We Used...

Lemma:

$$
(c \vec{v}) \cdot \vec{w}=\vec{v} \cdot(c \vec{w})=c(\vec{v} \cdot \vec{w}) .
$$

