LECTURE OUTLINE
 Three-Dimensional Dynamics

Professor Leibon

Math 15
Sep 24, 2004

Kinematics and Dynamics

Position
 Velocity

Path Length Acceleration

$$
\vec{F}=m \vec{a}
$$

Position

We describe a particle's position at time t via

$$
\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}
$$

with $x(t), y(t)$, and $z(t)$ differentiable functions of t, for t is in a specified interval $[a, b]$.

An Example

Suppose we have a monstrous wheel of radius 1 meter, which we imagine rolling a rate of 1 revolution per second without slipping along the x-axis in the x, y-plane.

1. Find a formula for the position of a piece of gum attached to the circumference of the wheel which at time zero is on the wheel's bottom (this is curve traced out is called a cycloid).

Velocity

$\vec{r}(t)$'s instantaneous change at time t equals

$$
\lim _{\Delta t \rightarrow 0} \frac{\vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}=\frac{d}{d t} \vec{r}(t)=\vec{v}(t)
$$

and is called $\vec{r} \mathbf{S}$ velocity.
2. Find our gum's velocity at each time.

Integration

For $t \geq a$

$$
\begin{aligned}
\vec{r}(t) & =\int_{a}^{t} \frac{d}{d t} \vec{r}(t) d t+\vec{r}(a) \\
& =\int_{a}^{t} \vec{v}(t) d t+\vec{r}(a),
\end{aligned}
$$

where we integrate each component. 3. Describe the curves that share our gum's velocity vector at each time.

Speed and Path Length

$\vec{r}(t)$'s Speed is given by $\left|\frac{d}{d t} \vec{r}(t)\right|$, while

$$
s(t)=\int_{0}^{t}\left|\frac{d}{d t} \vec{r}(t)\right| d t
$$

is the distance traveled during the time interval $[0, t]$.
4. Find the distance traversed by our gum at each time $<1 / 2$ (why?).

Acceleration

The acceleration of our particle $\vec{r}(t)$ is

$$
\vec{a}(t)=\frac{d}{d t} \vec{v}(t)=\frac{d^{2}}{d t^{2}} \vec{r}(t)
$$

For $t \geq a$

$$
\vec{v}(t)=\int_{a}^{t} \vec{a}(t) d t+\vec{v}(a)
$$

5. Find acceleration of our gum at each time and describe the curves that share our our gum's acceleration vector at each time.

Newton's Second Law

Provided the mass is assumed a constant

$$
\vec{F}=m \vec{a} .
$$

5. Describe the force on our gum at each time.
