LECTURE OUTLINE
 Coordinates and Vectors

Professor Leibon

Math 15
Sep 22, 2004

Coordinates

Introducing the (x, y, z)
 coordinates of three dimensional
 space.

Movement

Objects can "move" through these coordinates $(x(t), y(t), z(t))$.

Vector

We will also also want to encode direction in magnitude. For example, we will want to say go in direction "blah" for a distance of "blah". We encode such a statement with a vector,

$$
\vec{v}=x \hat{i}+y \hat{j}+z \hat{k}
$$

Norm

Given a vector $\vec{v}=x \hat{i}+y \hat{j}+z \hat{k}$ we encoded its magnitude (also norm or length) via

$$
|\vec{v}|=\sqrt{x^{2}+y^{2}+z^{2}},
$$

Scalar Multiplication

To encode the vector's direction, we must first learn scalar multiplication:

$$
c \vec{v}=c x \hat{i}+c y \hat{j}+c z \hat{k}
$$

Notice, the norm satisfies

$$
|c \vec{v}|=|c||\vec{v}| .
$$

Direction

\vec{v} 's direction is given by

$$
\hat{v}=\frac{\vec{v}}{|\vec{v}|}
$$

\hat{v} is called a unit vector and has norm 1, and is usually viewed as unitless.

Position Vector

In Euclidean space, once we've chosen a coordinate system we can view the point (x, y, z) as going from the origin in the direction and with the distance determined by the vector

$$
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

We call \vec{r} our points position vector.

Displacement

Staring at a point with position vector \vec{r}, we may move a point in the direction and for a distance determined by the vector \vec{d}. We say we are displacing a point via the displacement vector \vec{d}.

Vector Addition

Wonderfully, in Euclidean space, we can find our destination when staring at \vec{r} and displacing our selves via \vec{d} with vector addition. Namely our destination's position vector is

$$
\begin{aligned}
\vec{r}+\vec{d} & =(x \hat{i}+y \hat{j}+z \hat{k})+\left(x_{d} \hat{i}+y_{d} \hat{j}+z_{d} \hat{k}\right) \\
& =\left(x+x_{d}\right) \hat{i}+\left(y+y_{d}\right) \hat{j}+\left(z+z_{d}\right) \hat{k}
\end{aligned}
$$

The Sphere, General Relativity

We are really lucky to do so!!!

Properties

Scalar multiplication and vector addition satisfy some rules that can be useful in manipulating them. Let \vec{t}, \vec{v} and \vec{w} be vectors and c be a scalar.

$$
\begin{array}{ll}
\vec{v}+\vec{w}=\vec{w}+\vec{v} & \text { commutativity } \\
\vec{t}+(\vec{v}+\vec{w})=(\vec{t}+\vec{v})+\vec{w} & \text { Associativity } \\
c(\vec{v}+\vec{w})=c \vec{v}+c \vec{w} & \text { Distributivity }
\end{array}
$$

Linear Motion

An object is moving at a constant speed of 2 meters per second in the direction determined by $\vec{v}=2 \hat{i}+\hat{j}-3 \hat{k}$ and beginning at the point $(17,2,3)$ (where the units of distance are meters). Find its location:
(a) After 1 second.
(b) After 7 seconds (c) After t seconds.

