LECTURE OUTLINE Coordinates and Vectors

Professor Leibon

Math 15

Sep 22, 2004

Coordinates

Introducing the (x, y, z) coordinates of three dimensional space.

Movement

Objects can "move" through these coordinates (x(t), y(t), z(t)).

Vector

We will also also want to encode direction in magnitude. For example, we will want to say go in direction "blah" for a distance of "blah". We encode such a statement with a vector,

$$\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}$$

Norm

Given a vector $\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}$ we encoded its *magnitude* (also *norm* or *length*) via

$$|\vec{v}| = \sqrt{x^2 + y^2 + z^2},$$

Scalar Multiplication

To encode the vector's direction, we must first learn *scalar multiplication*:

$$c\vec{v} = cx\hat{i} + cy\hat{j} + cz\hat{k}$$

Notice, the norm satisfies

$$|c\vec{v}| = |c||\vec{v}|.$$

Direction

 \vec{v} 's direction is given by

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$

 \hat{v} is called a *unit vector* and has norm 1, and is usually viewed as unitless.

Position Vector

In Euclidean space, once we've chosen a coordinate system we can view the point (x,y,z) as going from the origin in the direction and with the distance determined by the vector

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}.$$

We call \vec{r} our points position vector.

Displacement

Staring at a point with position vector \vec{r} , we may move a point in the direction and for a distance determined by the vector \vec{d} . We say we are displacing a point via the *displacement vector* \vec{d} .

Vector Addition

Wonderfully, in Euclidean space, we can find our destination when staring at \vec{r} and displacing our selves via \vec{d} with *vector addition*. Namely our destination's position vector is

$$\vec{r} + \vec{d} = (x\hat{i} + y\hat{j} + z\hat{k}) + (x_d\hat{i} + y_d\hat{j} + z_d\hat{k})$$

$$= (x + x_d)\hat{i} + (y + y_d)\hat{j} + (z + z_d)\hat{k}.$$

The Sphere, General Relativity

We are really lucky to do so!!!

Properties

Scalar multiplication and vector addition satisfy some rules that can be useful in manipulating them. Let \vec{t} , \vec{v} and \vec{w} be vectors and c be a scalar.

$$\vec{v} + \vec{w} = \vec{w} + \vec{v}$$
 commutativity
 $\vec{t} + (\vec{v} + \vec{w}) = (\vec{t} + \vec{v}) + \vec{w}$ Associativity
 $c(\vec{v} + \vec{w}) = c\vec{v} + c\vec{w}$ Distributivity

Linear Motion

An object is moving at a constant speed of 2 meters per second in the direction determined by $\vec{v} = 2\hat{i} + \hat{j} - 3\hat{k}$ and beginning at the point (17, 2, 3) (where the units of distance are meters). Find its location:

- (a) After 1 second.
- (b) After 7 seconds
- (c) After t seconds.