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Gaol

Explore Pendulum
Taylor Approximation
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Utilizing Energy Conservation: The Pendulum

Suppose we have an ideal pendulum of length L (in a
vacuum) and from rest intend to impart it with a velocity of
v0

m

sec
.

1. Find the potential energy of our pendulum for each
angle θ.

2. Use conservation of energy to find the the pendulum’s
angular speed at each angle θ.

3. How fast must we start our pendulum so that it makes a
complete circle?

4. For each v0, what is our pendulum’s maximum height?
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Tangent Line Approximation

Near a

f(x) ≈ f(a) + f 1(a)(x − a) ≡ P1(x, a).

Example: Approximate
√

1.01.
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Quadratic Approximation

Even better, near a

f(x) ≈ f(a)+f 1(a)(x−a)+
1

2
f 2(a)(x−a)2 ≡ P2(x, a).

Example: Better approximate
√

1.01.
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nth Order Approximation at a

f(x) ≈
n

∑

k=0

fk(a)

k!
(x − a)k ≡ Pn(x, a)

near a. Notice dk

dxk Pn(x, a)
∣

∣

∣

x=a

= fk(a) for all 0 ≤ k ≤ n.

Ex: Find Pn(x, 0) for sin(x).
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