LECTURE OUTLINE Kinetic and Potential Energy

Professor Leibon

Math 15

Oct. 5, 2004

Explore: Potential Energy Conservative Forces Kinetic Energy

Examples From Last Time

Let $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ and let γ denote your favorite path determined from (0,0,0) to (1,1,1). Compute the potential energy at (1,1,1). Notice it is always $\frac{3}{2}$.

Do the same for $\vec{F} = xy\hat{i}+y\hat{j}+z\hat{k}$. What happens?

Conservative Force

A force is called *conservative* if the work done by \vec{F} as an object traverses a curve γ depends on only on γ 's end points.

1. Show the force $-mg\hat{k}$ is conservative.

2. Compute the potential energy of any point when using curves starting at (x_0, y_0, z_0) . (This is called the *gravitational potential*). Work Energy Theorem

Once again, let γ denote the path determined by $\vec{r}(t)$ for t in the interval [a, b]. Define the *kinetic energy* of a particle to be $\frac{m|\frac{d\vec{r}}{dt}(t)|^2}{2}$.

The Work Energy Theorem

$$W_{\vec{F}_T}(\gamma) = \frac{m |\frac{d\vec{r}}{dt}(b)|^2}{2} - \frac{m |\frac{d\vec{r}}{dt}(a)|^2}{2}.$$

Conservation of Energy

Using Energy: The Pendulum

Suppose we have an ideal pendulum of length *L* (in a vacuum) and from rest intend to impart it with a velocity of $v_0 \frac{m}{sec}$.

1. Find the potential energy of our pendulum for each angle θ .

2. Use conservation of energy to find the the pendulum's speed at each angle θ .

3. How fast must we start our pendulum so that it makes a complete circle?

4. For each v_0 , what is our pendulum's maximum height?