LECTURE OUTLINE Work and Line Integrals

Professor Leibon

Math 8
Oct. 4, 2004

Goals

Introduce:

Work

The Line Integral

Derivatives and the Dot Product

Theorem:

$$
\frac{d}{d t}\left(\overrightarrow{w_{1}} \cdot \overrightarrow{w_{2}}\right)=\frac{d \overrightarrow{w_{1}}}{d t} \cdot \overrightarrow{w_{2}}+\overrightarrow{w_{1}} \cdot \frac{d \overrightarrow{w_{2}}}{d t}
$$

Recall, some notation from last time

$$
\begin{aligned}
& \overrightarrow{w_{1}}=x_{1}(t) \hat{i}+y_{1}(t) \hat{j}+z_{1}(t) \hat{k} \text { and } \\
& \overrightarrow{w_{2}}=x_{2}(t) \hat{i}+y_{2}(t) \hat{j}+z_{2}(t) \hat{k} .
\end{aligned}
$$

One Consequence (of many)

Theorem: If the curvature is not 0 , then

$$
\hat{N} \cdot \hat{T}=0
$$

Forces

We must distinguish between the total force

$$
\vec{F}_{T}=m \vec{a}
$$

acting on an object and a force \vec{F}_{i} acting on an object where

$$
\vec{F}_{T}=\sum_{i=1}^{n} \vec{F}_{i} .
$$

Forces

Suppose a particle is acted on by a force

$$
\vec{F}=x \hat{i}+y \hat{j}+z \hat{k}
$$

while following the path $\left(t^{2}, t^{3}, t\right)$ for t in $[0,1]$. Can \vec{F} be the only force acting on the particle?

Work

Let \vec{F} be a force and let γ denote the the path determined by $\vec{r}(t)$ for t in the interval $[a, b]$. We say the work done by \vec{F} as an object traverses γ is given by the following line integral

$$
W_{\vec{F}}(\gamma)=\int_{\gamma} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F} \cdot \frac{d \vec{r}}{d t} d t .
$$

(From the first integral $W_{\vec{F}}(\gamma)$ is independent of the parameterization. Yet, from second integral we see work is most easily computed from a given parameterization.)

Example 1(a)

Let

$$
\vec{F}=x \hat{i}+y \hat{j}+z \hat{k}
$$

and γ denote the the path determined by

$$
\vec{r}(t)=t^{2} \hat{i}+t^{3} \hat{j}+t \hat{k}
$$

for t in the interval $[0,1]$. Compute the work done by \vec{F} as our object traverses γ.

Potential Energy

For each component force, we define the potential energy associated to this force at each time t to be

$$
U_{i}(\gamma(t))=-W_{\vec{F}_{i}}(\gamma([a, t]))
$$

(This notation is sly. It suggests that potential energy should depend only on γ 's end points. This is not always true, though this is indeed often the case for potential energies of interest to us.)

Example 1(b)

Let

$$
\vec{F}=x \hat{i}+y \hat{j}+z \hat{k}
$$

and let γ denote the the path determined by

$$
\vec{r}(t)=t^{2} \hat{i}+t^{3} \hat{j}+t \hat{k}
$$

for t in the interval $[0,1]$. Compute the potential energy at $(1,1,1)$.

Example 1(c)

Let

$$
\vec{F}=x \hat{i}+y \hat{j}+z \hat{k}
$$

and let γ denote your favorite path determined from $(0,0,0)$ to $(1,1,1)$. Compute the potential energy at $(1,1,1)$.

