LECTURE OUTLINE Work and Line Integrals

Professor Leibon

Math 8

Oct. 4, 2004

Introduce: Work The Line Integral

Derivatives and the Dot Product

Theorem:

$$\frac{d}{dt}\left(\vec{w_1}\cdot\vec{w_2}\right) = \frac{d\vec{w_1}}{dt}\cdot\vec{w_2} + \vec{w_1}\cdot\frac{d\vec{w_2}}{dt}$$

Recall, some notation from last time $\vec{w_1} = x_1(t)\hat{i} + y_1(t)\hat{j} + z_1(t)\hat{k}$ and $\vec{w_2} = x_2(t)\hat{i} + y_2(t)\hat{j} + z_2(t)\hat{k}.$

One Consequence (of many)

Theorem: If the curvature is not 0, then

$$\hat{N}\cdot\hat{T}=0.$$

We must distinguish between the total force

$$\vec{F}_T = m\vec{a}$$

acting on an object and a *force* $\vec{F_i}$ acting on an object where

Suppose a particle is acted on by a force

$$\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$$

while following the path (t^2, t^3, t) for t in [0, 1]. Can \vec{F} be the only force acting on the particle?

Work

Let \vec{F} be a force and let γ denote the the path determined by $\vec{r}(t)$ for t in the interval [a, b]. We say the work done by \vec{F} as an object traverses γ is given by the following *line integral*

$$W_{\vec{F}}(\gamma) = \int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F} \cdot \frac{d\vec{r}}{dt} dt.$$

(From the first integral $W_{\vec{F}}(\gamma)$ is independent of the parameterization. Yet, from second

integral we see work is most easily computed from a given parameterization.)

Example 1(a)

Let

$$\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$$

and γ denote the the path determined by

$$\vec{r}(t) = t^2 \hat{i} + t^3 \hat{j} + t \hat{k}$$

for *t* in the interval [0, 1]. Compute the work done by \vec{F} as our object traverses γ .

Potential Energy

For each component force, we define the *potential energy* associated to this force at each time t to be

$$U_i(\gamma(t)) = -W_{\vec{F}_i}(\gamma([a,t])).$$

(This notation is sly. It suggests that potential energy should depend only on γ 's end points. This is **not** always true, though this is indeed often the case for potential energies of interest to us.)

Example 1(b)

Let

$$\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$$

and let γ denote the the path determined by

$$\vec{r}(t) = t^2\hat{i} + t^3\hat{j} + t\hat{k}$$

for t in the interval [0, 1]. Compute the potential energy at (1, 1, 1).

Example 1(c)

Let

$$\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$$

and let γ denote your favorite path determined from (0, 0, 0) to (1, 1, 1). Compute the potential energy at (1, 1, 1).