LECTURE OUTLINE Total Derivative and Chain Rule

Professor Leibon

Math 15

Oct. 29, 2004

Tangent Planes The Chain Rule Linear Approximation Continuity

Tangent Plane (from last time)

The tangent plane at a point is given by $\vec{n} \cdot (\vec{r} - \vec{p})$ with $\vec{n} = -\frac{\partial f}{\partial x}\hat{i} - \frac{\partial f}{\partial y}\hat{j} + \hat{k}$ and $\vec{p} = x_0\hat{i} + y_0\hat{j} + f(x_0, y_0)\hat{k}$.

Example: $f(x, y) = x^2 - y^2$ at (0, 0, 0).

The tangent plane at a point is given by $\vec{n} \cdot (\vec{r} - \vec{p})$ with $\vec{n} = -\nabla f + \hat{k}$ and $\vec{p} = x_0 \hat{i} + y_0 \hat{j} + f(x_0, y_0) \hat{k}$.

Example: $f(x, y) = x^2 - y^2$ at (0, 0, 0). Zoom in towards (0, 0, 0)....

The tangent plane at a point is given by $\vec{n} \cdot (\vec{r} - \vec{p})$ with $\vec{n} = -\nabla f + \hat{k}$ and $\vec{p} = x_0 \hat{i} + y_0 \hat{j} + f(x_0, y_0) \hat{k}$.

Example: $f(x, y) = x^2 - y^2$ at (0, 0, 0). Zoom in towards (0, 0, 0) and we see this plane.

In other words: near (x_0, y_0) we have that f(x, y) looks like

$$z = f(x_0, y_0) + \nabla f \cdot (x - x_0, y - y_0).$$

Example: $f(x, y) = x^2 - y^2$ near (0, 0, 0).

In other words: near (x_0, y_0) we have that f(x, y) looks like

$$z = f(x_0, y_0) + \nabla f \cdot (x - x_0, y - y_0).$$

Example: $f(x, y) = x^2 - y^2$ near (0, 0, 0).

A Cruel and UNUSUAL view of the Chain Rule

Recall from last time

$$\frac{df(x,y)}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

This requires a caveat. The usual caveat is that this is true provided $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are continuous. In other words, be careful when a denomenator takes on a zero, or when function can't make up its mind about a certain value.

Ex. Let
$$f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
, $x(t) = \cos(\theta_0)t$ and $y(t) = \sin(\theta_0)t$.
Compare $\frac{df}{dt}$ and $\frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$.

Let $f(x, y) = \frac{xy}{\sqrt{x^2+y^2}}$. Zoom in towards the (0, 0, 0), and,...

Let $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$. Zoom in towards the (0, 0, 0), and nothing happens!

Let $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ and zoom in towards (0,0,0) on the graph of $\frac{\partial f}{\partial x}$...

Let $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ and zoom in towards (0,0,0) on the graph of $\frac{\partial f}{\partial x}$...

Let $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$ and zoom in towards (0, 0, 0) on the graph of $\frac{\partial f}{\partial x}$ and EEEEKKKK!!!!!!