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Tangent Planes
The Chain Rule
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Tangent Plane (from last time)

The tangent plane at a point is given by ~n · (~r − ~p) with
~n = −∂f

∂x
î − ∂f

∂y
ĵ + k̂ and ~p = x0î + y0ĵ + f(x0, y0)k̂.

Example: f(x, y) = x2 − y2 at (0, 0, 0).
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Tangent Plane

The tangent plane at a point is given by ~n · (~r − ~p) with
~n = −∇f + k̂ and ~p = x0î + y0ĵ + f(x0, y0)k̂.

Example: f(x, y) = x2 − y2 at (0, 0, 0). Zoom in towards
(0, 0, 0)....
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Tangent Plane

The tangent plane at a point is given by ~n · (~r − ~p) with
~n = −∇f + k̂ and ~p = x0î + y0ĵ + f(x0, y0)k̂.

Example: f(x, y) = x2 − y2 at (0, 0, 0). Zoom in towards
(0, 0, 0) and we see this plane.
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Tangent Plane

In other words: near (x0, y0) we have that f(x, y) looks like

z = f(x0, y0) + ∇f · (x − x0, y − y0).

Example: f(x, y) = x2 − y2 near (0, 0, 0).
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Tangent Plane

In other words: near (x0, y0) we have that f(x, y) looks like

z = f(x0, y0) + ∇f · (x − x0, y − y0).

Example: f(x, y) = x2 − y2 near (0, 0, 0).
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A Cruel and UNUSUAL view of the Chain Rule

Recall from last time

df(x, y)

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

This requires a caveat. The usual caveat is that this is true
provided ∂f

∂x
, ∂f

∂y
, dx

dt
and dy

dt
are continuous. In other words,

be careful when a denomenator takes on a zero, or when
function can’t make up its mind about a certain value.

Ex. Let f(x, y) = xy√
x2+y2

, x(t) = cos(θ0)t and y(t) = sin(θ0)t.

Compare df

dt
and ∂f

∂x
dx
dt

+ ∂f

∂y

dy

dt
.
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

. Zoom in towards the (0, 0, 0)...
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

. Zoom in towards the (0, 0, 0), and,...
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

. Zoom in towards the (0, 0, 0), and

nothing happens!
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

and zoom in towards (0, 0, 0) on the

graph of ∂f

∂x
...
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

and zoom in towards (0, 0, 0) on the

graph of ∂f

∂x
...
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The Non-Tangent Plane

Let f(x, y) = xy√
x2+y2

and zoom in towards (0, 0, 0) on the

graph of ∂f

∂x
and EEEEEKKKK!!!!!
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