LECTURE OUTLINE
 Tangent Planes and Gradients

Professor Leibon

Math 15
Oct. 27, 2004

Goals

The Chain Rule

 The Gradient The Tangent Plane
Chain Rule

Recall

$$
\frac{d f(x)}{d t}=\frac{d f}{d x} \frac{d x}{d t},
$$

this chain rule generalizes, and we have

$$
\frac{d f(x, y)}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} .
$$

Ex. Let $f(x, y)=x^{2} y+y^{3}, x(t)=\sin (t)$, and $y(t)=e^{t}$. Find $\frac{d}{d t}\left(e^{t}(\sin (t))^{2}+e^{3 t}\right)$ in the old way and using the chain rule.

Contour Directions and Mountain Climbs

Pick a direction $\hat{u}=\cos (\theta) \hat{i}+\sin (\theta) \hat{j}$ in the contour plot at the point $\left(x_{0}, y_{0}\right)$. Travel in this direction via
$\left(x_{0}+t \cos (\theta)\right) \hat{i}+\left(y_{0}+t \sin (\theta)\right) \hat{j}$ in the contour map. What is our velocity vector on the mountain side at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$?

Answer: Letting $\nabla f=\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}$, we have our velocity vector on the mountain side is given by

$$
\vec{u}+(\nabla f \cdot \vec{u}) \hat{k} .
$$

Example

Let $f(x, y)=\cos (x y) e^{\frac{-x^{2}-y^{2}}{10}}$. Find the gradient of $f(x, y)$. In each contour direction, what is our velocity vector at $\left(1,0, e^{-\frac{1}{10}}\right)$. What is the rate of change of our height in each of these directions?

Interpreting the Gradient

Notice: the fastest rate of height gain is achieved in the direction $\frac{\nabla f}{|\nabla f|}$, the fastest rate of height loss is achieved in the direction $-\frac{\nabla f}{|\nabla f|}$, while there is no change in height in a direction perpendicular to $\frac{\nabla f}{|\nabla f|}$.

Plane

A plane thought the origin is the collection of all position vectors \vec{r} perpendicular to a fixed vector \vec{n}, the plane's normal vector. Hence the equation $\vec{n} \cdot \vec{r}=0$ determines such a plane.

While the plane parallel to this plane that contains the point \vec{p} is determined by the equation $\vec{n} \cdot(\vec{r}-\vec{p})=0$.

Notice, a plane containing the vectors \vec{v}_{1} and $\mathrm{s} \vec{v}_{2}$ has $\vec{n}=\vec{v}_{1} \times \vec{v}_{2}$.

Tangent Plane

The tangent plane at a point on a mountain side is the plane contain the velocity vectors of the curves going through that point.
Argue that: the tangent plane at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ has normal given by $-\frac{\partial f}{\partial y} \hat{i}-\frac{\partial f}{\partial x} \hat{j}+\hat{k}$.

Find an equation for the tangent plane of
$f(x, y)=\cos (x y) e^{\frac{-x^{2}-y^{2}}{10}}$ at $\left(1,0, e^{-\frac{1}{10}}\right)$.

