LECTURE OUTLINE Rotational Kinematics Examples

Professor Leibon

Math 15

Oct. 20, 2004

Goals

Cross Product Application

Rigid Body Kinematics

Application to spacial reasoning

Ex: Note we can think of a line as $t\vec{v} + \vec{p}$. Define what it means for two lines to be non-parallel, and find a formula for the distance between two non-parallel lines.

Find the distance between the lines $(\hat{i} - 2\hat{k})t + \hat{i}$ and $\vec{v} = t(\hat{i} + \hat{j} + \hat{k})$.

Last Time

For our rotation use \hat{i} , \hat{j} , and \hat{k} with \hat{k} the axis of rotation and \hat{i} to \hat{j} in the direction of rotation (right hand rule). Give \hat{r} and $\hat{\theta}$ their usual meanings with respect to \hat{i} , \hat{j} , \hat{k} . There is a second "view" we might take to think about the center (center of mass) which we might call \hat{x} , \hat{y} , \hat{z} . A particle moving about another particle can be described by $\vec{r}_T = \vec{c} + r\hat{r} + z\hat{k}$.

Ex: I have a foot long football with radius $\frac{1}{4}$ ft around its central axis. Under ideal conditions, I punt my football with initial position $3\hat{z}$ feet, initial velocity $5\hat{x} + 3\hat{z}$ feet per second, and impart it a clockwise rotation of 4 revolution per second about the \hat{y} -axis (as was pointed out I am not a good punter). Find equation of motion for the tip of the ball in the above notation.

Kinematics

Usual Book Assumptions:

- (1) $\dot{r} = 0$ (Not Nutty)
- (2) z = 0 (Not so Nutty)
- (3) $\frac{d\hat{k}}{dt} = 0$ (Nutty)

Note: (3) The Great Yo-Yo Restriction allows us to assume

$$\frac{d\hat{i}}{dt} = 0$$
 and $\frac{d\hat{j}}{dt} = 0$ as well.

Kinematics

Book's Notation under the Usual Book Assumptions:

$$\vec{\omega} \equiv \dot{\theta}\hat{k} \equiv \omega \hat{k}$$

$$\vec{\alpha} \equiv \frac{d\vec{\omega}}{dt} = \ddot{\theta}\hat{k}$$

$$\vec{v} \equiv \frac{d\vec{r}}{dt} = r\dot{\theta}\hat{\theta} = \vec{\omega} \times \vec{r}$$

$$\vec{a} \equiv \frac{d\vec{v}}{dt} = -r\dot{\theta}^2\hat{r} + r\ddot{\theta}\hat{\theta} = \vec{\omega} \times \vec{v} + \vec{\alpha} \times \vec{r}$$

Derivatives in Polar Coordinates

$$\frac{d\hat{r}}{dt} = \dot{\theta}\hat{\theta}$$

$$\frac{d\hat{\theta}}{dt} = -\dot{\theta}\hat{r}$$

$$\frac{d\vec{r}}{dt} = \dot{r}\hat{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

$$\frac{d^2\vec{r}}{dt^2} = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta}$$