# LECTURE OUTLINE <br> Rotational Kinematics Examples 

Professor Leibon

Math 15
Oct. 20, 2004

Goals

## Cross Product Application

## Rigid Body Kinematics

## Application to spacial reasoning

Ex: Note we can think of a line as $t \vec{v}+\vec{p}$. Define what it means for two lines to be non-parallel, and find a formula for the distance between two non-parallel lines.

Find the distance between the lines $(\hat{i}-2 \hat{k}) t+\hat{i}$ and $\vec{v}=$ $t(\hat{i}+\hat{j}+\hat{k})$.

## Last Time

For our rotation use $\hat{i}, \hat{j}$, and $\hat{k}$ with $\hat{k}$ the axis of rotation and $\hat{i}$ to $\hat{j}$ in the direction of rotation (right hand rule). Give $\hat{r}$ and $\hat{\theta}$ their usual meanings with respect to $\hat{i}, \hat{j}, \hat{k}$. There is a second "view" we might take to think about the center (center of mass) which we might call $\hat{x}, \hat{y}, \hat{z}$. A particle moving about another particle can be described by $\vec{r}_{T}=\vec{c}+r \hat{r}+z \hat{k}$.

Ex: I have a foot long football with radius $\frac{1}{4} f t$ around its central axis. Under ideal conditions, I punt my football with initial position $3 \hat{z}$ feet, initial velocity $5 \hat{x}+3 \hat{z}$ feet per second, and impart it a clockwise rotation of 4 revolution per second about the $\hat{y}$-axis (as was pointed out I am not a good punter). Find equation of motion for the tip of the ball in the above notation.

## Kinematics

Usual Book Assumptions:
(1) $\dot{r}=0$ (Not Nutty)
(2) $z=0$ (Not so Nutty)
(3) $\frac{d \hat{k}}{d t}=0$ (Nutty)

Note: (3) The Great Yo-Yo Restriction allows us to assume $\frac{d \hat{i}}{d t}=0$ and $\frac{d \hat{j}}{d t}=0$ as well.

## Kinematics

## Book's Notation under the Usual Book Assumptions:

$$
\begin{gathered}
\vec{\omega} \equiv \dot{\theta} \hat{k} \equiv \omega \hat{k} \\
\vec{\alpha} \equiv \frac{d \vec{\omega}}{d t}=\ddot{\theta} \hat{k} \\
\vec{v} \equiv \frac{d \vec{r}}{d t}=r \dot{\theta} \hat{\theta}=\vec{\omega} \times \vec{r} \\
\vec{a} \equiv \frac{d \vec{v}}{d t}=-r \dot{\theta}^{2} \hat{r}+r \ddot{\theta} \hat{\theta}=\vec{\omega} \times \vec{v}+\vec{\alpha} \times \vec{r}
\end{gathered}
$$

## Derivatives in Polar Coordinates

$$
\begin{gathered}
\frac{d \hat{r}}{d t}=\dot{\theta} \hat{\theta} \\
\frac{d \hat{\theta}}{d t}=-\dot{\theta} \hat{r} \\
\frac{d \vec{r}}{d t}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta} \\
\frac{d^{2} \vec{r}}{d t^{2}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\theta}
\end{gathered}
$$

