LECTURE OUTLINE
 Polar Derivatives and Curve Geometry

Professor Leibon

Math 15
Oct. 1, 2004

Goals

Polar Derivatives

Curvature

Accelration's Components

For the Record

A parameterized curve for us is a mapping of the interval (a, b) into space given by
$(x(\tau), y(\tau), z(\tau))$ for $\tau \in(a, b)$; where $x(\tau), y(\tau)$, $y(\tau)$ are asssumed to be differentiable function of the parameter τ.
A nice curve parameterized by $\vec{r}(\tau)$ will mean a parameterized curve where $\frac{d \vec{r}}{d \tau}(\tau) \neq 0$ and $\vec{r}\left(\tau_{0}\right) \neq \vec{r}\left(\tau_{1}\right)$ when τ_{0} and τ_{1} are distinct numbers in (a, b).

Ellipse Review

We found that the point traveling along the ellipse described by $\left(\frac{e d}{1+e \cos (t)}, t\right)_{P}$ satisfied

$$
\frac{d \vec{r}}{d t}=\frac{e d \sin (t)}{(1+e \cos (t))^{2}} \hat{i}+\frac{e d(e+\cos (t))}{(1+e \cos (t))^{2}} \hat{j}
$$

and using $\vec{w}=\left(\vec{w} \cdot \hat{e}_{1}\right) \hat{e}_{1}+\left(\vec{w} \cdot \hat{e}_{2}\right) \hat{e}_{2}+\left(\vec{w} \cdot \hat{e}_{3}\right) \hat{e}_{3}$ we found

$$
\frac{d \vec{r}}{d t}=\frac{e^{2} d \sin (t)}{(1+e \cos (t))^{2}} \hat{r}+\frac{e d}{1+e \cos (t)} \hat{\theta} .
$$

Derivatives in Polar Coordinates

$$
\begin{aligned}
\frac{d \hat{r}}{d t} & =\dot{\theta} \hat{\theta} \\
\frac{d \hat{\theta}}{d t} & =-\dot{\theta} \hat{r} \\
\frac{d \vec{r}}{d t} & =\dot{r} \hat{r}+r \dot{\theta} \hat{\theta} \\
\frac{d^{2} \vec{r}}{d t^{2}} & =\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\theta} \\
& =(\ddot{r}+\text { Centrifugal }) \hat{r}+(\text { Coriolis }+r \ddot{\theta})
\end{aligned}
$$

Ellipse Part 2

Take our point following the path $\left(\frac{e d}{1+e \cos (t)}, t\right)_{P}$, and using the formulas on the previous slide find this point's velocity and acceleration in polar coordinates.

Our Speedometer

Imagine that we take a nice curve parameterized by $\vec{r}(t)$ for t in $[0, b]$, and lay it gently along the s -axis. (Assume we lay it down on the positve s direction with $\vec{r}(0)$ placed at $s=0$). We know that $\vec{r}(t)$ is sent to $s(t)=\int_{0}^{t}\left|\frac{d \vec{r}}{d t}\right| d t$. This $s(t)$ motion along the s axis contains our "speedometer's speed and acceleration". (Imaigne we are in a car and can only look at our watch and the speedometer, but not out the window of a windy road).

Geometry of a Curve

We have

$$
\frac{d \vec{r}}{d t}=\frac{d s}{d t} \frac{d \vec{r}}{d s} \equiv \frac{d s}{d t} \hat{T}
$$

and

$$
\frac{d^{2} \vec{r}}{d t^{2}}=\frac{d^{2} s}{d t^{2}} \hat{T}+\left(\frac{d s}{d t}\right)^{2} \frac{d \hat{T}}{d s} \equiv \frac{d^{2} s}{d t^{2}} \hat{T}+\left(\frac{d s}{d t}\right)^{2}(k \hat{N})
$$

where $k(s)=\left|\frac{d \vec{T}}{d s}\right|$ is called the curves curvature at $\vec{r}(s)$, and $\hat{T} \cdot \hat{N}=0$.

Ellipse Part 3

For each t, find the curvature of our ellipse $\left(\frac{e d}{1+e \cos (t)}, t\right)_{P}$.

