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Goals

Cross Product and the
Determinant

Rigid Body Kinematics
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Last time we explored the Cross Product

Nice and Linear:

(~v1 + c~v2) × ~w = ~v1 × ~w + c~v2 × ~w

but, Not Commutative!

~v × ~w = −~w × ~v

and Not Associative!

(~u × ~v) × ~w = ~u × (~v × ~w) + ~v × (~w × ~u)

In particular, ~u × ~v × ~w has no good meaning!
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Computing a 3 × 3 Determinant

~u × ~v =
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Let ~u = î − 2k̂, ~v = î + ĵ + k̂ and ~w = 3î + 2ĵ, and compute

~w · (~u × ~v)
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Application to spacial reasoning

Ex: Note we can think of a line as t~v + ~p. Define what it
means for two lines to be non-parallel, and find a formula
for the distance between two non-parallel lines.

Find the distance between the lines (̂i − 2k̂)t + î and ~v =

t(̂i + ĵ + k̂).
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Kinematics

For our rotation use î, ĵ, and k̂ with k̂ the axis of rotation
and î to ĵ in the direction of rotation (right hand rule). Give
r̂ and θ̂ there usual meanings with respect to î, ĵ, k̂. There
is a second "view" we might take to think about the center
(center of mass) which we might call îc, ĵc, k̂c. A particle
moving about another particle can be described by:

~r = ~c + rr̂ + zk̂.
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Kinematics

Usual Book Assumptions:
(1) ṙ = 0 (Not Nutty)
(2) z = 0 (Not so Nutty)
(3) dk̂

dt
= 0 (Nutty)

Note: (3) The Great Yo-Yo Restriction allows us to assume
d̂i
dt

= 0 and dĵ

dt
= 0 as well.
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Kinematics

Book’s Notation under the Usual Book Assumptions:

~ω ≡ θ̇k̂ ≡ ωk̂

~α ≡

d~ω

dt
= θ̈k̂

~v ≡

d~r

dt
= rθ̇θ̂ = ~ω × ~r

~a ≡

d~v

dt
= −rθ̇2r̂ + rθ̈θ̂ = ~ω × ~v + ~α × ~r
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Derivatives in Polar Coordinates

dr̂
dt

= θ̇θ̂

dθ̂
dt

= −θ̇r̂

d~r
dt

= ṙr̂ + rθ̇θ̂

d2~r
dt2

= (r̈ − rθ̇2)r̂ + (2ṙθ̇ + rθ̈)θ̂
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