LECTURE OUTLINE
 Kinematics of Rotation

Professor Leibon

Math 15
Oct. 18, 2004

Goals

Cross Product and the Determinant

Rigid Body Kinematics

Last time we explored the Cross Product

Nice and Linear:

$$
\left(\vec{v}_{1}+c \vec{v}_{2}\right) \times \vec{w}=\vec{v}_{1} \times \vec{w}+c \vec{v}_{2} \times \vec{w}
$$

but, Not Commutative!

$$
\vec{v} \times \vec{w}=-\vec{w} \times \vec{v}
$$

and Not Associative!

$$
(\vec{u} \times \vec{v}) \times \vec{w}=\vec{u} \times(\vec{v} \times \vec{w})+\vec{v} \times(\vec{w} \times \vec{u})
$$

In particular, $\vec{u} \times \vec{v} \times \vec{w}$ has no good meaning!

Computing a 3×3 Determinant

$$
\begin{aligned}
& \vec{u} \times \vec{v}=\left|\begin{array}{ll}
u_{y} & u_{z} \\
v_{y} & v_{z}
\end{array}\right| \hat{i}-\left|\begin{array}{cc}
u_{x} & u_{z} \\
v_{x} & v_{z}
\end{array}\right| \hat{j}+\left|\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right| \hat{k} \\
& \vec{w} \cdot(\vec{u} \times \vec{v}) \equiv\left|\begin{array}{lll}
w_{x} & w_{y} & w_{z} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|=\vec{w} \cdot\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|
\end{aligned}
$$

Let $\vec{u}=\hat{i}-2 \hat{k}, \vec{v}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{w}=3 \hat{i}+2 \hat{j}$, and compute $\vec{w} \cdot(\vec{u} \times \vec{v})$

Application to spacial reasoning

Ex: Note we can think of a line as $t \vec{v}+\vec{p}$. Define what it means for two lines to be non-parallel, and find a formula for the distance between two non-parallel lines.

Find the distance between the lines $(\hat{i}-2 \hat{k}) t+\hat{i}$ and $\vec{v}=$ $t(\hat{i}+\hat{j}+\hat{k})$.

Kinematics

For our rotation use \hat{i}, \hat{j}, and \hat{k} with \hat{k} the axis of rotation and \hat{i} to \hat{j} in the direction of rotation (right hand rule). Give \hat{r} and $\hat{\theta}$ there usual meanings with respect to $\hat{i}, \hat{j}, \hat{k}$. There is a second "view" we might take to think about the center (center of mass) which we might call $\hat{i}_{c}, \hat{j}_{c}, \hat{k}_{c}$. A particle moving about another particle can be described by:

$$
\vec{r}=\vec{c}+r \hat{r}+z \hat{k} .
$$

Kinematics

Usual Book Assumptions:
(1) $\dot{r}=0$ (Not Nutty)
(2) $z=0$ (Not so Nutty)
(3) $\frac{d \hat{k}}{d t}=0$ (Nutty)

Note: (3) The Great Yo-Yo Restriction allows us to assume $\frac{d \hat{i}}{d t}=0$ and $\frac{d \hat{j}}{d t}=0$ as well.

Kinematics

Book's Notation under the Usual Book Assumptions:

$$
\begin{gathered}
\vec{\omega} \equiv \dot{\theta} \hat{k} \equiv \omega \hat{k} \\
\vec{\alpha} \equiv \frac{d \vec{\omega}}{d t}=\ddot{\theta} \hat{k} \\
\vec{v} \equiv \frac{d \vec{r}}{d t}=r \dot{\theta} \hat{\theta}=\vec{\omega} \times \vec{r} \\
\vec{a} \equiv \frac{d \vec{v}}{d t}=-r \dot{\theta}^{2} \hat{r}+r \ddot{\theta} \hat{\theta}=\vec{\omega} \times \vec{v}+\vec{\alpha} \times \vec{r}
\end{gathered}
$$

Derivatives in Polar Coordinates

$$
\begin{gathered}
\frac{d \hat{r}}{d t}=\dot{\theta} \hat{\theta} \\
\frac{d \hat{\theta}}{d t}=-\dot{\theta} \hat{r} \\
\frac{d \vec{r}}{d t}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta} \\
\frac{d^{2} \vec{r}}{d t^{2}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\theta}
\end{gathered}
$$

