LECTURE OUTLINE
 Cross Product

Professor Leibon

Math 15
Oct. 18, 2004

Goals

Cross Product

Cross Product

Given vectors \vec{u} and \vec{v} we define $\vec{u} \times \vec{v}$ to be the unique vector satisfying
(1) $\vec{u} \times \vec{v}$ is orthogonal to \vec{u} and to \vec{v} (or zero).
(2) It has length equal to the area of the parallelogram determined by \vec{u} and \vec{v}.
(3) $\vec{u} \times \vec{v}$ is in the direction determined by the right hand rule going from \vec{u} to \vec{v}.

Example: Find $\hat{r} \times \hat{\theta}$.

Main Theorem

Let $u=u_{x} \hat{i}+u_{y} \hat{j}+u_{z} \hat{k}$ and $v=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k}$, then $\vec{u} \times \vec{v}$ equals

$$
\left(u_{y} v_{z}-u_{z} v_{y}\right) \hat{i}-\left(u_{x} v_{z}-u_{z} v_{x}\right) \hat{j}+\left(u_{x} v_{y}-u_{y} v_{x}\right) \hat{k}
$$

Example: Find $\hat{r} \times \hat{\theta}$.
Prove property (1).

Warm Up: Parallelogram Area in the plane

The oriented area A of the parallelogram determined by $\vec{u}=a \hat{i}+b \hat{j}$ and $\vec{v}=c \hat{i}+d \hat{j}$ satisfies

$$
\begin{gathered}
A^{2}=(b a s e)^{2}(h e i g h t)^{2}=|\vec{u}|^{2}|\vec{v}|^{2}(\sin (\theta))^{2} \\
=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(1-\cos (\theta)^{2}\right)=\left(\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)-(a c+b d)^{2}\right) \\
=(a d-b c)^{2}
\end{gathered}
$$

Hence the square root, the oriented area, is given by

$$
a d-b c \equiv \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left|\begin{array}{cc}
a & b \\
c & d
\end{array}\right|
$$

(The last line is "absolutely" the stupidest notation ever introduced. Why?)

Parallelogram Area (Part (2))

The oriented area A of the parallelogram determined by $\vec{u}=u_{x} \hat{i}+u_{y} \hat{j}+u_{z} \hat{k}$ and $\vec{v}=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k}$, satisfies

$$
\begin{gathered}
A^{2}=(\text { base })^{2}(\text { height })^{2}=|\vec{v}|^{2}\left(|\vec{w}|^{2}\left(1-\cos (\theta)^{2}\right)\right. \\
=\left(u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right)\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)-\left(u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}\right)^{2} \\
=\left(u_{y} v_{z}-u_{z} v_{y}\right)^{2}+\left(u_{x} v_{z}-u_{z} v_{x}\right)^{2}+\left(u_{x} v_{y}-u_{y} v_{x}\right)^{2} \\
=\left|\begin{array}{ll}
u_{y} & u_{z} \\
v_{y} & v_{z}
\end{array}\right|^{2}+\left|\begin{array}{cc}
u_{x} & u_{z} \\
v_{x} & v_{z}
\end{array}\right|^{2}+\left|\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|^{2}
\end{gathered}
$$

Ex. Find the area of the parallelogram determined by $\vec{u}=$ $\hat{i}-2 \hat{k}$ and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$.

Parallelepiped Volume

The volume V^{2} of the parallelepiped determined by \vec{u}, \vec{v}, and \vec{w} is given by

$$
\begin{aligned}
V^{2}=(\text { base })^{2}(\text { height })^{2} & =|\vec{u} \times \vec{v}|^{2}\left(|\vec{w}|\left(\frac{(\vec{u} \times \vec{v}) \cdot \vec{w}}{|\vec{u} \times \vec{v}||\vec{w}|}\right)\right)^{2} \\
= & (\vec{w} \cdot(\vec{u} \times \vec{v}))^{2}
\end{aligned}
$$

Hence the square root, the oriented volume, is given by

$$
\vec{w} \cdot(\vec{u} \times \vec{v}) \equiv \operatorname{det}\left(\begin{array}{lll}
w_{x} & w_{y} & w_{z} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right) \equiv\left|\begin{array}{lll}
w_{x} & w_{y} & w_{z} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right| .
$$

Parallelepiped Volume

Ex. Find the area of the parallelepiped determined by
$\vec{u}=\hat{i}-2 \hat{k}, \vec{v}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{w}=3 \hat{i}+2 \hat{j}$.
Ex: Note we can think of a line as $t \vec{v}+\vec{p}$. Define what it means for two lines to be non-parallel, and find a formula for the distance between two non-parallel lines.

