# LECTURE OUTLINE Fun With Power Series! 

Professor Leibon

Math 15
Oct. 15, 2004

Goals

## Review Power Series

 Let's Party! (Sum fun sums)
## Power Series

A function given by

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

is called a power series. It domain is the set of $x$ where this series converges.
Ex: $\sum_{n=1}^{\infty} x^{n}, \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}, \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}$, and
$\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.

## Radius of Convergence

$f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ either
(a) converges only at $a$
(b) converges for all $x$
(c) there is an $R>0$ called the radius of convergence such that $f(x)$ converges or all $x$ such that $a-R<x<a+R$ and diverges for all $a+R<x$ and $x<a-R$.
Ex: Recall the radius of convergence of $\sum_{n=1}^{\infty} x^{n}$,
$\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}, \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}$, and $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.

## Differentiation and Integration

If $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has a radius of convergence $R$, then

$$
\begin{aligned}
\frac{d f}{d x} & =\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}, \text { and } \\
\int f d x & =\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{n+1}+C
\end{aligned}
$$

in ( $a-R, a+R$ ), and each of these power series has radius of convergence $R$.

## Examples

Ex: Find a power series expansion of $\log (1-x)$ about $x=0$ and its radius of convergence.

Ex: Find a power series expansion of $\arctan (x)$ about $x=0$ and find its radius of convergence.

## Euler's $\gamma$ Constant

Show the harmonic series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

diverge to $" \ln (\infty)$ ". We Let

$$
\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\ln (N)\right)=\gamma \approx 0.57721566
$$

Show

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=\ln (2) .
$$

## Verify

$$
\begin{aligned}
& 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9} \cdots \\
& + \\
& 0+\frac{1}{2}+0-\frac{1}{4}+0+\frac{1}{6}+0-\frac{1}{8}+0 \ldots \\
& = \\
& 1+0+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+0+\frac{1}{7}-\frac{1}{4}+\frac{1}{9} \ldots
\end{aligned}
$$

Does this imply $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=\frac{3}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ equals $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ ?

## In Between Alternating and Positive

Recall, we can factor a number into distinct primes raised to some powers. For example,

$$
12=(2)^{2}(3)
$$

while

$$
30=(2)(3)(5) .
$$

We say that 30 has 3 distinct factors (2,3, and 5), while we say that 12 has a factor with a power bigger than 1 (namely the 2 is squared).

## In Between

Let $f(n)$ be equal to the Möbius Function which is
0 if some factor of $n$ has a power bigger than 1 ,
+1 if the factors are distinct and there are an even number of them,
and -1 if the factors are distinct and there are an odd number of them.

The Challenge: Find where $\sum \frac{M \ddot{\partial b i u s}(n)}{n^{p}}$ converges.

## Thinking about the Radius of Convergence

For any $a$, find $b_{n}$ so that near $a$

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} b_{n}(x-a)^{k}
$$

and find this series's radius of convergence.
Exciting Example: Try and do the same for $\frac{1}{1+x^{2}}$.

## Exciting Examples

## Explore the radius of convergence of the

 power Series expansion of$$
\frac{1}{1+x^{2}}
$$

about $a=0, a=1$, and $a=2$.

