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LECTURE OUTLINE
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Professor Leibon

Math 15
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Goals

Geometric Series
Power Series

Radius of Convergence
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Taylor Series

For any x (memorize!)

sin(x) =
∞∑

k=0

(−1)kx2k+1

(2k + 1)!

cos(x) =
∞∑

k=0

(−1)kx2k

(2k)!

ex =
∞∑

k=0

xk

k!
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Using Taylor Series

Demonstrate

d

dx
ex = ex

d

dx
sin(x) = cos(x)

∫
sin(x)dx = − cos(x) + C
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Power Series

A function given by

f(x) =
∞∑

k=1

ak(x − a)k.

is called a power series.

Every power series has a radius of convergence r

such that f(x) converges for all x in (a − r, a + r)

the series diverges and for all x outside
(a − r, a + r).
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Very Very Very Very Very Very Very Very Very
Very Very Very Very Very Very Very Very Very
Very Very Very Very Very Important Example

The following identity really wants to hold
(memorize!)

1

1 − x
=

∞∑
k=0

xk.

What is the radius of convergence? Why?
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A Sequence

A sequence is a list of numbers b1, b2, b3 . . . , bn . . .,
often denoted as {b1, b2, b3 . . .}, {bn}

∞
n=1 or simply

{bn}.

Example: {xn} for a fixed real number x.
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A Limit

A sequence {bn} has limit L provided for every

ε > 0 there exist an integer N such that for every
n > N

|bn − L| < ε.

Example: Find the limit of {xn}.
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A Convergent Sequence

If {bn} has a limit L, we say {bn} is convergent and
we denote this as an → L as n → ∞ or

lim
n→∞

bn = L.

When {bn} has no limit we call {bn} divergent.

Example: Put our example in this context.
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A Series

A series is a new sequence {sn} built from an old sequence
{bn} by letting

sn = b1 + . . . + bn =
n∑

i=1

bi.

If the limit of {sn} exist we denote it as

∞∑
i=1

bi

and say that {bn}’s sum is convergent. Otherwise we say the
sum is divergent.

Example: Analyze
∑
∞

n=0
xn. LECTURE OUTLINE Power Series – p.10/12
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